Regularity of solutions to a one dimensional plasticity model
ESAIM: Modélisation mathématique et analyse numérique, Volume 32 (1998) no. 5, pp. 521-537.
@article{M2AN_1998__32_5_521_0,
     author = {Babu\v{s}ka, I. and Shi, P.},
     title = {Regularity of solutions to a one dimensional plasticity model},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {521--537},
     publisher = {Elsevier},
     volume = {32},
     number = {5},
     year = {1998},
     mrnumber = {1643489},
     zbl = {0906.73028},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1998__32_5_521_0/}
}
TY  - JOUR
AU  - Babuška, I.
AU  - Shi, P.
TI  - Regularity of solutions to a one dimensional plasticity model
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1998
SP  - 521
EP  - 537
VL  - 32
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/item/M2AN_1998__32_5_521_0/
LA  - en
ID  - M2AN_1998__32_5_521_0
ER  - 
%0 Journal Article
%A Babuška, I.
%A Shi, P.
%T Regularity of solutions to a one dimensional plasticity model
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1998
%P 521-537
%V 32
%N 5
%I Elsevier
%U http://www.numdam.org/item/M2AN_1998__32_5_521_0/
%G en
%F M2AN_1998__32_5_521_0
Babuška, I.; Shi, P. Regularity of solutions to a one dimensional plasticity model. ESAIM: Modélisation mathématique et analyse numérique, Volume 32 (1998) no. 5, pp. 521-537. http://www.numdam.org/item/M2AN_1998__32_5_521_0/

[1] I. Babuška, Y. Li and K. L. Jerina, Rehability of computational analysis of plasticity problems, In Non-linear Computational Mechanics, P. Wriggers and W. Wagner Eds, Springer-verlag, 1991.

[2] I. Babuška and P. Shi, A continuous Galerkin method in one dimensional plasticity, in preparation.

[3] P. Benilan, M. G. Grandall and P. Sacks, Some Ll existence and dependence results for semilinear elliptic equationsunder non linear boundary conditions, Appl. Math. Optim. Vol. 17. 1988, pp. 203-224. | MR | Zbl

[4] G. Duvault and J. L. Lions, Inequalities in mechanics and physics, Springer-Verlag, Berlin-New York, 1976. | MR | Zbl

[5] I. Ekeland and R. Temam, Convex analysis and variational problems, North-Holland, 1976. | MR | Zbl

[6] W. Han and B. D. Reddy, Computational plasticity: the variational basis and numerical analysis, Computational Mechanics Advances, 2, No. 2, 1995. | MR | Zbl

[7] I. Hlaváček, J. Haslinger, J. Nečas and J. Lovišek, Solutions of variational inequalities in mechanics, Springer-Verlag, 1988. | MR | Zbl

[8] C. Johnson, Existence theorems for plasticity problems, J. Math. Pure et Appl., 55, pp. 431-444 (1976). | MR | Zbl

[9] C. Johnson, On plasticity with hardening, J. Math. Anal. Appl., 62, pp. 333-344 (1978). | MR | Zbl

[10] M. A. Krasnosel'Skii and A. V. Pokrovskii, Systems with Hysteresis (in Russian), Nauka, Moscow, 1983 (English edition: Springer 1989). | MR

[11] P. Krejćĭ, Hysteresis, Convexity, and Dissipation in Hyperbolic Equations, Springer, 1996. | MR

[12] Y. Li and I. Babuška, A convergence analysis of an H-version finite element method with high order elements for two dimensional elasto-plastic problems, SIAM J. Numer. Anal., to appear. | MR | Zbl

[13] J. Lubliner, Plasticity Theory, Macmillan Publishing Company, New York, 1990. | Zbl

[14] J. Lemaitre and J. L. Chaboche, Mechanics of Solid Materials, Cambridge University Press, 1985. | Zbl

[15] G. Maugin, The Thermodynamics of Plasticity and Fracture, Cambridge University Press, 1992. | MR | Zbl

[16] A. Visintin, Differential Models of Hysteresis, Springer, 1994. | MR | Zbl

[17] M. Zyzckowski, Combined Loading in the Theory of Plasticity, PWN-Polish Scientific Publisher, Warszawa, 1981. | Zbl