A convergence result for an iterative method for the equations of a stationary quasi-newtonian flow with temperature dependent viscosity
ESAIM: Modélisation mathématique et analyse numérique, Volume 32 (1998) no. 4, pp. 391-404.
@article{M2AN_1998__32_4_391_0,
     author = {Wardi, S.},
     title = {A convergence result for an iterative method for the equations of a stationary quasi-newtonian flow with temperature dependent viscosity},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {391--404},
     publisher = {Elsevier},
     volume = {32},
     number = {4},
     year = {1998},
     mrnumber = {1636360},
     zbl = {0916.76066},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1998__32_4_391_0/}
}
TY  - JOUR
AU  - Wardi, S.
TI  - A convergence result for an iterative method for the equations of a stationary quasi-newtonian flow with temperature dependent viscosity
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1998
SP  - 391
EP  - 404
VL  - 32
IS  - 4
PB  - Elsevier
UR  - http://www.numdam.org/item/M2AN_1998__32_4_391_0/
LA  - en
ID  - M2AN_1998__32_4_391_0
ER  - 
%0 Journal Article
%A Wardi, S.
%T A convergence result for an iterative method for the equations of a stationary quasi-newtonian flow with temperature dependent viscosity
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1998
%P 391-404
%V 32
%N 4
%I Elsevier
%U http://www.numdam.org/item/M2AN_1998__32_4_391_0/
%G en
%F M2AN_1998__32_4_391_0
Wardi, S. A convergence result for an iterative method for the equations of a stationary quasi-newtonian flow with temperature dependent viscosity. ESAIM: Modélisation mathématique et analyse numérique, Volume 32 (1998) no. 4, pp. 391-404. http://www.numdam.org/item/M2AN_1998__32_4_391_0/

[1] R. A. Adams, Sobolev Spaces, Academic press. (1975). | MR | Zbl

[2] P. Avenas, J. F. Agassant, J. Sergent, La mise en forme des matières plastiques, Lavoisier (1982).

[3] J. Baranger, A. Mikelic, Stationary solutions to a quasi-Newtonian flow with viscous heating, Mathematical Models and Methods in applied Sciences, vol. 5-N, pp. 725 738 (1995). | MR | Zbl

[4] G. Cimatti, The stationary thermistor problem with a current limiting device, Proc. Royal. Soc. Edinburgh, Sect. A, 116 (1990), pp. 79-84. | MR | Zbl

[5] R. Dautray, J. L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques, vol. 2, "L'opérateur de Laplace", Masson (1987). | MR | Zbl

[6] D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential. Equations of Second Order, Springer. (1983). | MR | Zbl

[7] S. D. Howison, J. F. Rodrigues, M. Shillor, Stationary solutions to the Thermistor problem, Journal Math. Anal., Appl., 174 (1993), pp. 573-588. | MR | Zbl

[8] O. A. Ladyzenskaya, N. N. Ural'Ceva, Equations aux dérivées partielles de type elliptique, Dunod, Paris (1968). | MR | Zbl

[9] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villard, Paris (1969). | MR | Zbl

[10] J. L. Lions, E. Magenes, Problemi ai limiti non omogenei, Ann. Sc. Norm. Sup. Pisa, 15 (1961), 39-110. | Numdam | MR

[11] N. G. Meyers, An Lp-estimate for the gradient of solutions of the second order elliptic divergence equations, Ann. Sc. Norm. Sup. Pisa, 17 (1963), pp. 189-206. | Numdam | MR | Zbl

[12] R. Temam, Navier-Stokes equations, North-Holland (1979). | Zbl

[13] V. V. Zhikov, S. Sian Lin Fan, On some variational problems, Prepulication of Pedacogical. University of Vladimir, Russia (1995).