@article{M2AN_1998__32_3_307_0, author = {Fr\'enod, Emmanuel and Lucquin-Desreux, Brigitte}, title = {On conservative and entropic discrete axisymmetric {Fokker-Planck} operators}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {307--339}, publisher = {Elsevier}, volume = {32}, number = {3}, year = {1998}, mrnumber = {1627143}, zbl = {0911.65136}, language = {en}, url = {http://www.numdam.org/item/M2AN_1998__32_3_307_0/} }
TY - JOUR AU - Frénod, Emmanuel AU - Lucquin-Desreux, Brigitte TI - On conservative and entropic discrete axisymmetric Fokker-Planck operators JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1998 SP - 307 EP - 339 VL - 32 IS - 3 PB - Elsevier UR - http://www.numdam.org/item/M2AN_1998__32_3_307_0/ LA - en ID - M2AN_1998__32_3_307_0 ER -
%0 Journal Article %A Frénod, Emmanuel %A Lucquin-Desreux, Brigitte %T On conservative and entropic discrete axisymmetric Fokker-Planck operators %J ESAIM: Modélisation mathématique et analyse numérique %D 1998 %P 307-339 %V 32 %N 3 %I Elsevier %U http://www.numdam.org/item/M2AN_1998__32_3_307_0/ %G en %F M2AN_1998__32_3_307_0
Frénod, Emmanuel; Lucquin-Desreux, Brigitte. On conservative and entropic discrete axisymmetric Fokker-Planck operators. ESAIM: Modélisation mathématique et analyse numérique, Volume 32 (1998) no. 3, pp. 307-339. http://www.numdam.org/item/M2AN_1998__32_3_307_0/
[1] Handbook of mathematematical functions. Dover Publications, INC, New York.
&[2] The conservative splitting method for solving Boltzmann's equation. U.S.R.R. Comput. Maths. Math. Phys., Vol. 20, No. 1, p. 208-225. | MR | Zbl
& , 1980,[3] On the connection between a solution of the Boltzmann equation and a solution of the Landau-Fokker-Planck equation. Math. U.S.S.R. Sbornik, Vol. 69, No. 2, p. 465-478. | MR | Zbl
& , 1991,[4] On the existence of a generalized solution of Landau's equation. U.S.S.R. Comput. Maths. Math. Phys., Vol. 17, p. 241-246. | MR | Zbl
& , 1978,[5] Conservative Finite-Difference Schemes for the Fokker-Planck Equation Not Violating the Low of an Increasing Entropy. Jour. of comp. phys., Vol. 69, p. 163-174. | MR | Zbl
, & , 1987,[6] Stopping and thermahzation of interpenetrating plasma streams. Phys. Fluids B, Vol. 3, No. 1.
, , , , , & , 1990,[7] Expansion of the Boltzmann collision integral in a Laudau series. Sov. Phys. Dolk., Vol. 20, No. 11, p. 740-742.
, 1981,[8] Kinetic equations of the Landau type as a model of the Boltzmann equation and completely conservative difference schemes. U.S.R.R. Comput. Maths. Math. Phys., Vol. 20, No. 4, p. 190-201. | MR | Zbl
, & ,[9] Le code Procions. Note CEA No. N 2780, CEA/CEL-V, F-94195 Villeneuve St. Georges Cedex.
& , 1994,[10] On asymptotics of the Boltzmann equation when the collisions become grazing. Trans. Th. and Stat. Phys., Vol. 21, No. 3, p. 259-276. | MR | Zbl
, 1992,[11] The Fokker-Plank assymptotics of the Boltzmann operator in the Coulomb case. Math. Mod. and Meth. in Appl. Sc., Vol. 2, No. 2, p. 167-182. | MR | Zbl
& , 1992,[12] An entropy scheme for the Fokker-Planck collision operator of plasma kinetic theory. Numer. Math., Vol. 68, p. 239-262. | MR | Zbl
& , 1994,[13] Table of integrals, series and products. Academic press. | MR | Zbl
& ,[14] Principles of plasma physics. Mc Graw Hill book company.
& , 1973,[15] Fokker-Planck calculations on relaxation of anisotropic velocity distributions in plasmas. Phys. rev. A, Vol. 36, No. 1.
& , 1987,[16] Kinetic simulation of a plasma collision experiment. Phys. Fluids B, Vol. 5, No. 8.
, 1993,[17] A numerical, conservative and entropic scheme for the Fokker-Planck equation. In preparation.
, , & ,[18] Discrétisation de l'opérateur de Fokker-Planck dans le cas homogène. C. R. Acad. Sci., Paris, t. 314, p. 407-411. | MR | Zbl
, 1992,[19] Relaxation of a system of particles with Coulomb interactions. Phys. Rev., Vol. 107, No. 2. | MR | Zbl
, & , 1957,[20] Conservative Difference Schemes for the Fokker-Planck Equation. U.S.R.R. Comput. Maths. Math. Phys., Vol. 24, No. 3, p. 206-210. | MR
& , 1984,[21] A completely conservative difference scheme for the two-dimensional Landau equation. U.S.R.R. Comput. Math. Math. Phys., Vol. 20, No. 2, p. 249-253. | MR
& , 1979,[22] Finite Difference Methods for the Fokker-Planck Equation. J. Comp. Phys., Vol. 6, p. 483-509. | MR | Zbl
, 1970,