@article{M2AN_1998__32_3_255_0, author = {Ko\v{c}vara, Michal and Zibulevsky, Michael and Zowe, Jochem}, title = {Mechanical design problems with unilateral contact}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {255--281}, publisher = {Elsevier}, volume = {32}, number = {3}, year = {1998}, mrnumber = {1627151}, zbl = {0901.73055}, language = {en}, url = {http://www.numdam.org/item/M2AN_1998__32_3_255_0/} }
TY - JOUR AU - Kočvara, Michal AU - Zibulevsky, Michael AU - Zowe, Jochem TI - Mechanical design problems with unilateral contact JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1998 SP - 255 EP - 281 VL - 32 IS - 3 PB - Elsevier UR - http://www.numdam.org/item/M2AN_1998__32_3_255_0/ LA - en ID - M2AN_1998__32_3_255_0 ER -
%0 Journal Article %A Kočvara, Michal %A Zibulevsky, Michael %A Zowe, Jochem %T Mechanical design problems with unilateral contact %J ESAIM: Modélisation mathématique et analyse numérique %D 1998 %P 255-281 %V 32 %N 3 %I Elsevier %U http://www.numdam.org/item/M2AN_1998__32_3_255_0/ %G en %F M2AN_1998__32_3_255_0
Kočvara, Michal; Zibulevsky, Michael; Zowe, Jochem. Mechanical design problems with unilateral contact. ESAIM: Modélisation mathématique et analyse numérique, Volume 32 (1998) no. 3, pp. 255-281. http://www.numdam.org/item/M2AN_1998__32_3_255_0/
[1] Truss topology design under multiple loading. DFG Report 367, Math. Institut, Univ. of Bayreuth, 1992.
.[2] Minimax compliance truss topology subject to multiple loadings. In M. BendsØe and C. Mota-Soares, editors, Topology optimization of trusses, pages 43-54. Kluwer Academic Press, Dortrecht, 1993. | MR
.[3] Equivalent displacement based formulations for maximum strength truss topology design. IMPACT of Computing in Science and Engineering, 4: 315-345, 1992. | MR | Zbl
, , and .[4] Optimal design for minimum weight and compliance in plane stress using extremal microstructures. European J. on Mechanics (A/Solids) 12: 839-878, 1993. | MR | Zbl
and .[5] Numerical Methods in Finite Element Analysis. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1976. | Zbl
and .[6] A new iterative method for optimal truss topology design. SIAM J. Optimization, 3: 322-358, 1993. | MR | Zbl
and .[7] Optimization methods for truss geometry and topology design. Structural Optimization, 7: 141-159, 1994.
, and .[8] Penalty/barrier multiplier methods for minmax and constrained smooth convex programs. Research report 9/92, Optimization Laboratory, Technion-Israel Institute of Technology, Haifa, 1992.
, and .[9] Penalty/barrier multiplier methods: a new class of augmented lagrangian algorithms for large scale convex programming problems. SIAM J. Optimization, 7, 1997. | MR | Zbl
and .[10] An analytical model to predict optimal material properties in the context of optimal structural design. J. Applied Mechanics, 61: 930-937, 1994. | MR | Zbl
, , , and .[11] Optimization of Structural Topology, Shape and Material, Springer-Verlag, Heidelberg, 1995. | MR | Zbl
.[12] Lectures on Optimization. Springer-Verlag, Berlin, 1978.
.[13] The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, New York, Oxford, 1978. | MR | Zbl
.[14] Convex Analysis and Variational Problems. North-Holland, Amsterdam, 1976. | MR | Zbl
and .[15] Applied Optimal Design. Wiley, New York, 1979.
and[16] Solution of Variational Inequalities in Mechanics. Springer-Verlag, New-York, 1988. | MR | Zbl
, , and[17] Interior point methods for mechanical design problems. SIAM J. Optimization. To appear.
, and .[18] Truss topology optimization involving unilateral contact. J. Optimization Theory and Applications, 87, 1995. | Zbl
, and .[19] How mathematics can help in design of mechanical structures. In. D.F. Griffiths and G.A. Watson, eds., Numerical Analysis 1995, Longman, Harlow, 1996, pp. 76-93. | Zbl
and .[20] On stiffness maximization of variable thickness sheet with unilateral contact. Quarterly of Applied Mathematics, 54: 541-550, 1996. | MR | Zbl
[22] An approximation theory for optimum sheet in unilateral contact. Quarterly of Applied Mathematics. To appear. | MR | Zbl
and .[23] Saddle point approach to stiffness optimization of discrete structures including unilateral contact. Control and Cybernetics, 3: 461-479, 1994. | MR | Zbl
and .[24] Topology optimization of sheets in contact by a subgradient method. International Journal for Numerical Methods in Engineerings. To appear. | MR | Zbl
and .[25] Modified barrier fonctions: Theory and methods. Mathematical Programming, 54: 177-222, 1992. | MR | Zbl
.[26] A dual approach to solving nonlinear programming problems by unconstrained optimization. Mathematical Programming, 5: 354-373, 1973. | MR | Zbl
[27] Convex Analysis. Princeton University Press, Princeton, New Jersey, 1970. | MR | Zbl
[28] On the convergence of the exponential multiplier method for convex programming. Mathematical Programming, 60: 1-19, 1993. | MR | Zbl
and