About an inverse eigenvalue problem arising in vibration analysis
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 29 (1995) no. 4, p. 421-434
@article{M2AN_1995__29_4_421_0,
     author = {Dai, Hua},
     title = {About an inverse eigenvalue problem arising in vibration analysis},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {29},
     number = {4},
     year = {1995},
     pages = {421-434},
     zbl = {0842.65023},
     mrnumber = {1346277},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1995__29_4_421_0}
}
Dai, Hua. About an inverse eigenvalue problem arising in vibration analysis. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 29 (1995) no. 4, pp. 421-434. http://www.numdam.org/item/M2AN_1995__29_4_421_0/

[1] G. Srang, 1980, Linear algebra and its applications, Academic Press, New York. | MR 575349 | Zbl 0463.15001

[2] K. J. Bathe and E. L. Wllson, 1976, Numerical methods in finite element analysis, Prentice-Hall, Englewood Cliffs, New Jersey. | Zbl 0387.65069

[3] D. H. F. Chu, 1983, Modal testing and modal refinement, American Society of Mechanical Engineers, New York.

[4] A. Berman and W. G. Flannely, 1971, Theory of incomplete models of dynamic structures, AIAA J., 9 pp. 1491-1487.

[5] M. Baruch and I. Y. Bar-Itzhack, 1978, Optimal weighted orthogonalization of measued modes, AIAA J., 16, pp. 346-351.

[6] M. Baruch, 1978, Optimization procedure to correct stiffness and flexibility matrices using vibration tests, AIAA J., 16, pp. 8-10. | Zbl 0395.73056

[7] F. S. Wei, 1980, Stiffness matrix correction from incomplete test data, AIAA J., 18, pp.1274-1275. | Zbl 0462.73074

[8] M. Baruch, 1982, Optimal correction of mass and stiffness matrices using measured modes, AIAA J., 20, pp. 1623-1626.

[9] A. Berman and E. J. Nagy, 1983, Improvement of a large analytical model using test data, AIAA J., 21, pp.1168-1173.

[10] Dai Hua, 1988, Optimal correction of stiffness, flexibility and mass matrices using vibration tests, J. of Vibration Engineering, 1, pp.18-27. | MR 963565

[11] Dai Hua, 1994, Stiffness matrix correction using test data, Acta Aeronautica et Astronautica Sinica, 15,pp. 1091-1094.

[12] Zhang Lei, 1987, A kind of inverse problem of matrices and its numerical solution, Mathematica Numerica Sinica, 9, pp. 431-437. | MR 948584 | Zbl 0641.65037

[13] Zhang Lei, 1989, The solvability conditions for theinverse problem of symmetric nonnegative definite matrices, Mathematica Numerica Sinica, 11,pp. 337-343. | MR 1347044 | Zbl 0973.15008

[14] Liao Anping, 1990, A class of inverse problems of matrix equation AX = B and its numerical solution, Mathematica Numerica Sinica, 12, pp.108-112. | MR 1056652 | Zbl 0850.65075

[15] Wang Jiasong and Chang Xiaowen, 1992, The best approximation of symmetric positive semidefinite matrices with spectral constraints, Numer. Math, - A.J. of Chinese Universities, 14,pp. 78-86. | MR 1178019 | Zbl 0756.65058

[16] R. A. Horn and C. R. Johnson, 1985, Matrix analysis, Cambridge University Press, New York. | MR 832183 | Zbl 0576.15001

[17] J. H. Wllklnson, 1965, The algebraic eigenvalue problem, Clarendon Press, Oxford. | MR 184422 | Zbl 0258.65037

[18] J. P. Aubin, 1979, Applied functional analysis, John Wiley, New York. | MR 549483 | Zbl 0424.46001

[19] N. J. Hlgham, 1988, Computing a nearest symmetric positive semi-definite matrix, Linear Algebra Appl., 103, pp. 103-118. | Zbl 0649.65026

[20] J. H. Wllkinson and C. Reinsch, 1971, Handbook for automatic computations, vol. II, Linear Algebra, Springer-Verlag, New York. | MR 461856

[21] F. Chatelin, 1993, Eigenvalues of matrices, Wiley, Chichester. | MR 1232655 | Zbl 0783.65031