Analysis of mixed methods using conforming and nonconforming finite element methods
ESAIM: Modélisation mathématique et analyse numérique, Volume 27 (1993) no. 1, pp. 9-34.
@article{M2AN_1993__27_1_9_0,
     author = {Chen, Zhangxin},
     title = {Analysis of mixed methods using conforming and nonconforming finite element methods},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {9--34},
     publisher = {AFCET - Gauthier-Villars},
     address = {Paris},
     volume = {27},
     number = {1},
     year = {1993},
     mrnumber = {1204626},
     zbl = {0784.65075},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1993__27_1_9_0/}
}
TY  - JOUR
AU  - Chen, Zhangxin
TI  - Analysis of mixed methods using conforming and nonconforming finite element methods
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1993
SP  - 9
EP  - 34
VL  - 27
IS  - 1
PB  - AFCET - Gauthier-Villars
PP  - Paris
UR  - http://www.numdam.org/item/M2AN_1993__27_1_9_0/
LA  - en
ID  - M2AN_1993__27_1_9_0
ER  - 
%0 Journal Article
%A Chen, Zhangxin
%T Analysis of mixed methods using conforming and nonconforming finite element methods
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1993
%P 9-34
%V 27
%N 1
%I AFCET - Gauthier-Villars
%C Paris
%U http://www.numdam.org/item/M2AN_1993__27_1_9_0/
%G en
%F M2AN_1993__27_1_9_0
Chen, Zhangxin. Analysis of mixed methods using conforming and nonconforming finite element methods. ESAIM: Modélisation mathématique et analyse numérique, Volume 27 (1993) no. 1, pp. 9-34. http://www.numdam.org/item/M2AN_1993__27_1_9_0/

[1] T. Arbogast, A new formulation of mixed finite element methods for second order elliptic problems (to appear).

[2] D. N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods : implementation postprocessing and error estimates, RAIRO Model. Math. Anal Numér., 19 (1985), pp 7-32. | EuDML | Numdam | MR | Zbl

[3] F. Brezzi, J. Douglas Jr and L. Donatella Marini, Two families of mixed finite elements for second order elliptic problems, Numer Math., 47 (1985), pp 217-235. | EuDML | MR | Zbl

[4] Z. Chen, On the relationship between mixed and Galerkin finite element methods, Ph. D. thesis, Purdue University, West Lafayette, Indiana, August (1991).

[5] F. Brezzi and M. Fortin, Hybrid and Mixed Finite Element Methods, to appear.

[6] P. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. | MR | Zbl

[7] J. Douglas Jr and J. E. Roberts, Global estimates for mixed methods for second order elliptic problems, Math. Comp., 45 (1985), pp 39-52. | MR | Zbl

[8] R. Falk and J. Osborn, Error estimates for mixed methods, RAIRO, Model. Math. Anal. Numér., 14 (1980), pp 249-277. | EuDML | Numdam | MR | Zbl

[9] M. Fortin and M. Soulie, A non-conforming piecewise quadratic finite element on triangles, Internat. J. Numer. Methods Engrg., 19 (1983), pp 505-520. | MR | Zbl

[10] B. X. Fraeijs De Veubeke, Displacement and equilibrium models in the finite element method, in Stress Analysis, O. C. Zienkiewicz and G. Hohste (eds.), John Wiley, New York, 1965.

[11] L. Donatella Marini, An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method, SIAM J. Numer. Anal., 22 (1985), pp 493-496. | MR | Zbl

[12] L. Donatella Marini and P. Pietra, An abstract theory for mixed approximations of second order elliptic problems, Mat. Apl. Comput., 8 (1989), pp 219-239. | MR | Zbl

[13] P. A. Raviart and J. M. Thomas, A mixed finite element method for second order elliptic problems, in Mathematical Aspects of the Finite Element Method, Lecture Notes in Math. 606, Springer-Verlag, Berlin and New York (1977), pp 292-315. | MR | Zbl