Semidiscrete and single step fully discrete finite element approximations for second order hyperbolic equations with nonsmooth solutions
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 27 (1993) no. 1, p. 55-63
@article{M2AN_1993__27_1_55_0,
     author = {Bales, L. A.},
     title = {Semidiscrete and single step fully discrete finite element approximations for second order hyperbolic equations with nonsmooth solutions},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {27},
     number = {1},
     year = {1993},
     pages = {55-63},
     zbl = {0766.65082},
     mrnumber = {1204628},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1993__27_1_55_0}
}
Bales, L. A. Semidiscrete and single step fully discrete finite element approximations for second order hyperbolic equations with nonsmooth solutions. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 27 (1993) no. 1, pp. 55-63. http://www.numdam.org/item/M2AN_1993__27_1_55_0/

[1] G. A. Baker and J. H. Bramble Semidiscrete and single step fully discrete approximations for second order hyperbolic equations, RAIRO Modél. Math. Anal. Numer., V. 13, 1979, pp. 75-100. | Numdam | MR 533876 | Zbl 0405.65057

[2] L. A. Bales, Finite element computations for second order hyperbolic equations with nonsmooth solutions, Comm. in App. Num. Meth., V. 5, 1989, pp. 383-388. | Zbl 0679.65086

[3] J. H. Bramble and A. H. Schatz, Higher order local accuracy by averaging in the finite element method, Math. Comp., V. 31, 1977, pp. 94-111. | MR 431744 | Zbl 0353.65064

[4] T. Geveci, On the convergence of Galerkin approximation schemas for second-order hyperbolic equations in energy and negative norms, Math. Comp., V. 42, 1984, pp.393-415. | MR 736443 | Zbl 0553.65082

[5] C. Johnson and U. Navert, An analysis of some finite element methods for advection-diffusion problems, in Analytical and Numerical Approaches to Asymptotic Problems in Analysis, L. S. Frank and A. van der Sluis (Eds), North-Holland, 1981, pp. 99-116. | MR 605502 | Zbl 0455.76081

[6] P. D. Lax and M. S. Mock, The computation of discontinuous solutions of linear hyperbolic equations, Comm Pure Appl. Math., V. 31, 1978, pp. 423-430. | MR 468216 | Zbl 0362.65075

[7] V. Thomee, Galerkin Finite Methods for Parabolic Problems, Springer-Verlag, 1984. | MR 744045 | Zbl 0528.65052