@article{M2AN_1992__26_5_627_0, author = {Barrett, J. W.}, title = {Finite element approximation of a {non-Lipschitz} nonlinear eigenvalue problem}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, pages = {627--656}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {26}, number = {5}, year = {1992}, zbl = {0761.65079}, mrnumber = {1177390}, language = {en}, url = {http://www.numdam.org/item/M2AN_1992__26_5_627_0/} }
TY - JOUR AU - Barrett, J. W. TI - Finite element approximation of a non-Lipschitz nonlinear eigenvalue problem JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique PY - 1992 DA - 1992/// SP - 627 EP - 656 VL - 26 IS - 5 PB - AFCET - Gauthier-Villars PP - Paris UR - http://www.numdam.org/item/M2AN_1992__26_5_627_0/ UR - https://zbmath.org/?q=an%3A0761.65079 UR - https://www.ams.org/mathscinet-getitem?mr=1177390 LA - en ID - M2AN_1992__26_5_627_0 ER -
Barrett, J. W. Finite element approximation of a non-Lipschitz nonlinear eigenvalue problem. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 26 (1992) no. 5, pp. 627-656. http://www.numdam.org/item/M2AN_1992__26_5_627_0/
Large time behaviour of solutions of the porous medium equation in bounded domains J. Differ. Eq, 39, 378-412. | Zbl 0475.35059
and , 1981,Finite element approximation of a plasma equilibrium problem IMA J. Numer Anal., 9, 443-464. | Zbl 0681.76114
and , 1989,Finite element approximation of a free boundary problem arising in the theory of liquid drops and plasma physics R.A.I.R.O. M2.A N., 25, 213-252. | Numdam | Zbl 0709.76086
and , 1991,Finite element approximation of a model reaction-diffusion equation with a non-Lipschitz nonlinearity. Numer. Math., 59, 217-242. | Zbl 0735.65078
and , 1991,Approximation by finite element method of the model plasma problem R.A.I.R.O. M2.A.N., 25, 49-66. | Numdam | Zbl 0712.76069
, 1991,Maximum principle and uniform convergence for the finite element method. Comp. Meth. Appl. Mech Engrg., 2, 17-31. | Zbl 0251.65069
and , 1973,Nonlinear eigenvalue problems in elliptic variational inequalities : some results for the maximal branch. Part 1 : Approximation of solutions. Part 2 : Estimates for the free boundaries and « stability » results. Numer. Funct. Anal. Optim., 9 and 10, 1059-1090, 1091-1114. | Zbl 0647.49004
and , 1987a, b,On Numerical Approximation in Bifurcation Theory. Springer-Verlag, Berlin. | Zbl 0687.65057
and , 1990,A computational method of solving free-boundary problems in vortex dynamics. J. Comput. Phys., 78, 194-214. | Zbl 0645.76025
and , 1988,Partial Differential Equations. Holt, Reinhart & Winston. New York. | Zbl 0224.35002
, 1969,Elliptic Partial Differential Equations of Second Order. 2nd Edition. Springer, Berlin, Heidelberg. | Zbl 0361.35003
and , 1983,An analysis of upwind schemes for the Navier-Stokes equations. SIAM J. Numer. Anal., 19, 312-333. | Zbl 0487.76036
and , 1982,Sharp L∞-error estimates for semilinear elliptic problems with free boundaries. Numer. Math., 54, 243-255. | MR 971701 | Zbl 0663.65125
, 1988,An Analysis of the Finite Element Method. Prentice-Hall, New Jersey. | MR 443377 | Zbl 0356.65096
and , 1973,Local behaviour in finite element methods, in : Handbook of Numerical Analysis Vol. 2 (P. G. Ciarlet and J. L. Lions, Eds. ). North Holland, Amsterdam. | MR 1115238 | Zbl 0875.65089
, 1990,