Vibrations of a folded plate
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 24 (1990) no. 4, p. 501-521
@article{M2AN_1990__24_4_501_0,
     author = {Le Dret, Herv\'e},
     title = {Vibrations of a folded plate},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {24},
     number = {4},
     year = {1990},
     pages = {501-521},
     zbl = {0712.73044},
     mrnumber = {1070967},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1990__24_4_501_0}
}
Le Dret, Hervé. Vibrations of a folded plate. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 24 (1990) no. 4, pp. 501-521. http://www.numdam.org/item/M2AN_1990__24_4_501_0/

[1] R. A. Adams, Sobolev Spaces. Academie Press, New York (1975). | MR 450957 | Zbl 0314.46030

[2] M. Aufranc, Numerical study of a junction between a three-dimensional elastic structure and a plate, Comp. Methods Appl. Mech. Engrg. 74, 207-222 (1989). | MR 1020623 | Zbl 0687.73067

[3] F. Bourquin & P. G. Ciarlet, Modeling and justification of eigenvalue problems for junctions between elastic structures. To appear in J. Funct. Anal. (1988). | MR 1026860 | Zbl 0699.73010

[4] P. G. Ciarlet &S. Kesavan, Two-dimensional approximation of three-dimensional eigenvalue problems in plate theory. Comp. Methods Appl. Mech.Engrg. 26, 149-172 (1980). | MR 626720 | Zbl 0489.73057

[5] P. G. Ciarlet & H. Le Dret, Justification of the boundary conditions of a clamped plate by an asymptotic analysis. To appear in Asympt. Anal. (1988). | MR 978264 | Zbl 0699.73011

[6] P. G. Ciarlet,H. Le Dret & R. Nzengwa, Modélisation de la jonction entre un corps élastique tridimensionnel et une plaque.C.R. Acad. Sci. Paris, Série I, 305, 55-58 (1987). | MR 902275 | Zbl 0632.73015

[7] P. G. Ciarlet, H. Le Dret & R. Nzengwa, Junctions between three-dimensional and two-dimensional linearly elastic structures.J. Math. Pures Appl. 68, 261-295 (1989). | MR 1025905 | Zbl 0661.73013

[8] R. Courant & D. Hilbert, Methods of Mathematical Physics, Vol. I. Interscience, New York (1953). | MR 65391 | Zbl 0051.28802

[9] P. Destuynder, Sur une Justification des modèles de plaques et de coques par les méthodes asymptotiques. Doctoral Dissertation, Université Pierre & Marie Curie, Paris (1980).

[10] H. Le Dret, Modélisation d'une plaque pliée. C.R. Acad. Sci. Paris, Série l, 304, 571-573 (1987). | MR 894999 | Zbl 0634.73047

[11] H. Le Dret, Modeling of a folded plate. To appear in Comput. Mech. (1987). | MR 894999 | Zbl 0741.73026

[12] H. Le Dret, Folded plates revisited. Comput. Mech. 5, 345-365 (1989). | Zbl 0741.73025

[13] H. Le Dret, Modeling of the junction between two rods. J. Math. Pures Appl. 68, 365-397 (1989). | MR 1025910 | Zbl 0743.73020

[14] J.-L. Lions & E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 1. Dunod, Paris (1968). | MR 247243 | Zbl 0165.10801

[15] J.-L. Lions & E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 2. Dunod, Paris (1968). | MR 247244 | Zbl 0165.10801

[16] P.-A. Raviart & J.-M. Thomas, Introduction à l'analyse numérique des équations aux dérivées partielles. Masson, Paris (1983). | MR 773854 | Zbl 0561.65069