Defect correction methods for convection dominated convection-diffusion problems
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 24 (1990) no. 4, p. 423-455
@article{M2AN_1990__24_4_423_0,
     author = {Axelsson, O. and Layton, W.},
     title = {Defect correction methods for convection dominated convection-diffusion problems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {24},
     number = {4},
     year = {1990},
     pages = {423-455},
     zbl = {0705.65081},
     mrnumber = {1070965},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1990__24_4_423_0}
}
Axelsson, O.; Layton, W. Defect correction methods for convection dominated convection-diffusion problems. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 24 (1990) no. 4, pp. 423-455. http://www.numdam.org/item/M2AN_1990__24_4_423_0/

[1] O. Axelsson, On the numencal solution of convection dominated, convection-diffusion problems, in : Math. Meth. Energy Res. (K. I. Gross, ed. ), SIAM,Philadelphia, 1984. | MR 790509 | Zbl 0551.76077

[2] O. Axelsson, Stability and error estimates of Galerkin finite element approximations for convection-diffusion equations, I. M. A. J. Numer. Anal., 1 (1981), 329-345. | MR 641313 | Zbl 0508.76069

[3] W. Eckhaus, Boundary layers in linear elliptic singular perturbation problems, SIAM Review, 14 (1972), 225-270. | MR 600325 | Zbl 0234.35009

[4] V. Ervin andW. Layton, High resolution minimal storage algorithms for convection dommated, convection diffusion equations, pp 1173-1201 in Tiams : of the Fourth Arms Conf. on Appl. Math. and Comp., 1987. | MR 905115 | Zbl 0625.76095

[5] V. Ervin andW. Layton, An analysis of a defect correction method for a model convection diffusion equations, SIAM J. N. A. 26 (1989) 169-179. | MR 977954 | Zbl 0672.65063

[6] P. W. Hemker, Mixed defect correction iteration for the accurate solution of the convection diffusion equation, pp 485-501 in : Multigrid Methods, L. N. M. vol. 960, (W. Hackbusch and U. Trottenberg, eds.) Springer Verlag, Berlin 1982. | MR 685785 | Zbl 0505.65047

[7] P. W. Hemker, The use of defect correction for the solution of a singularly perturbed o.d.e., preprint. CWI, Amsterdam, 1983. | Zbl 0504.65050

[8] C. Johnson and U. Nävert, An analysis of some finite element methods for advection diffusion problems, in : Anal. and Numer. Approaches to Asym. Probs. in Analysis (O. Axelson, L. S. Frank and A. van der Sluis, eds.) North Holland, 1981, 99-116. | MR 605502 | Zbl 0455.76081

[9] C. Johnson and U. Nävert andJ. Pitkaranta, Finite element methods for linear hyperbolic problems, Comp. Meth. Appl. Mech. Eng., 45 (1984), 285-312. | MR 759811 | Zbl 0526.76087

[10]C. Johnson and A. H. Schatz and L. B. Wahlbin, Crosswind smear and pointwise errors in streamline diffusion finite element methods, Math. Comp., 49 (1987), 25-38. | MR 890252 | Zbl 0629.65111

[11] C. Miranda, Partial differential equations of elliptic type, Springer Verlag, Berlin, 1980. | MR 284700 | Zbl 0198.14101

[12] U. Nävert, A finite element method for convection diffusion problems, Ph. D. Thesis, Chalmers Inst. of Tech., 1982.

[13] A. H. Schatz and L. Wahlbtn, On the finite element method for singularly perturbed reaction-diffusion problems in two and one dimensions, Math. Comp. 40 (1983), pp 47-89. | MR 679434 | Zbl 0518.65080