The convergence of a Galerkin approximation scheme for an extensible beam
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 23 (1989) no. 4, p. 597-613
@article{M2AN_1989__23_4_597_0,
     author = {Geveci, Tunc and Christie, Ian},
     title = {The convergence of a Galerkin approximation scheme for an extensible beam},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {23},
     number = {4},
     year = {1989},
     pages = {597-613},
     zbl = {0727.73093},
     mrnumber = {1025074},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1989__23_4_597_0}
}
Geveci, Tunc; Christie, Ian. The convergence of a Galerkin approximation scheme for an extensible beam. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 23 (1989) no. 4, pp. 597-613. http://www.numdam.org/item/M2AN_1989__23_4_597_0/

[1] G. A. Baker & J. H. Bramble, Semidiscrete and single step fully discrete approximations for second order hyperbolic equations, RAIRO Anal. Numer. 13 (1979), 75-100. | Numdam | MR 533876 | Zbl 0405.65057

[2] J. M. Ball, Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl. 42 (1973), 61-90. | MR 319440 | Zbl 0254.73042

[3] I. Christie & J. M. Sanz-Serna, A Galerkin method for a nonlinear integro-differential wave system, Comp. Meth. Appl. Mech. Eng. 44 (1984), 229-237. | MR 757058 | Zbl 0525.73089

[4] R. Courant & D. Hilbert, Methods of Mathematical Physics, Vol. 1, Wiley-Interscience, New York, 1953. | MR 65391 | Zbl 0051.28802

[5] R. W. Dickey, Free vibrations and dynamic buckling of an extensible beam, Math. Anal. Appl. 29 (1970), 443-454. | MR 253617 | Zbl 0187.04803

[6] T. Geveci, On the convergence of Galerkin approximation schemes for second-order hyperbolic equations in energy and negative norms, Math. Compt. 42 (1984), 393-415. | MR 736443 | Zbl 0553.65082

[7] P. Holmes & J. Marsden, Bifurcation to divergence and flutter in flow-induced oscillations : An infinite dimensional analysis, Automatica 14 (1978), 367-384. | MR 495662 | Zbl 0385.93028

[8] J. Rauch, On convergence of the finite element method for the wave equation, SIAM J. Numer. Anal. 22 (1985), 245-249. | MR 781318 | Zbl 0575.65091

[9] J. M. Sanz-Serna, Methods for the numerical solution of the nonlinear Schroedinger equation, Math. Compt. 43 (1984), 21-27. | MR 744922 | Zbl 0555.65061

[10] G. Strang & G. J. Fix, An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, N.J., 1973. | MR 443377 | Zbl 0356.65096

[11] V. Thomée, Negative norm estimates and superconvergence in Galerkin methods for parabolic problems, Math. Compt. 34 (1980), 99-113. | MR 551292 | Zbl 0454.65077

[12] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, Springer lecture Notes in Mathematics v. 1054, Springer-Verlag, Berlin, 1984. | MR 744045 | Zbl 0528.65052

[13] S. Woinowsky-Krieger, The effect of the axial force on the vibration of hinged bars, J. Appl. Mech, 17 (1950), 35-36. | MR 34202 | Zbl 0036.13302