A finite element approximation of three dimensional motion of a Bingham fluid
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 23 (1989) no. 2, p. 293-333
@article{M2AN_1989__23_2_293_0,
     author = {Kim, Jong Uhn},
     title = {A finite element approximation of three dimensional motion of a Bingham fluid},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {23},
     number = {2},
     year = {1989},
     pages = {293-333},
     zbl = {0675.76009},
     mrnumber = {1001332},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1989__23_2_293_0}
}
Kim, Jong Uhn. A finite element approximation of three dimensional motion of a Bingham fluid. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 23 (1989) no. 2, pp. 293-333. http://www.numdam.org/item/M2AN_1989__23_2_293_0/

[1] D. Begis, Analyse numérique de l'écoulement d'un fluide de Bingham, Thèse Université de Paris, 1972.

[2] L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes, Rend Mat Sem. Univ. Padova, 31, 1961, p. 300-340. | Numdam | MR 138894 | Zbl 0116.18002

[3] P. G. Ciarlet, The Finite Element Method for Elhptic Problems, North-Holland, Amsterdam-New York-Oxford, 1978. | MR 520174 | Zbl 0383.65058

[4] G. Duvaut, and J. L. Lions, Écoulement d'un fluide rigide viscoplastiqueincompressible, C. R. Acad Sc. Paris, T 270, 1970, pp. 58-61. | MR 261154 | Zbl 0194.57604

[5] G. Duvaut and J. L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, Berlm-Heidelberg-New York, 1976. | MR 521262 | Zbl 0331.35002

[6] M. Fortin, Calcul numérique des écoulements des fluides de Bingham et desfluides newtomens incompressibles par la méthode des éléments finis, Thèse, Université de Paris, 1972.

[7] D. Gilbarg, and N. S. Trudinger, Elliptic Partial Differential Equations ofsecond order, Springer-Verlag, Berlin-Heidelberg-New York, 1977. | MR 473443 | Zbl 0361.35003

[8] V. Girault and P. A. Raviart, Finite element Approximation of the Navier-Stokes Equations, Lecture Notes in Math. Vol. 749, Springer-Verlag, 1979. | MR 548867 | Zbl 0413.65081

[9] R. Glowinski, Sur l'écoulement d'un fluide de Bmgham dans une conduite cylindrique, J. Mech. 13 (4), 1974, p 601-621. | MR 371245 | Zbl 0324.76004

[10] R. Glowinski, Numencal Methods for Nonhnear vanational Problems, Springer-Verlag, New York-Berlin-Heidelberg, 1984.

[11] R. Glowinski, J. L. Lions, and R. Tremolieres, Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam-New York-Oxford, 1981. | MR 635927 | Zbl 0463.65046

[12] J. G. Heywood, and R. Rannacher, Finite Element Approximation of the Nonstationary Navier-Stokes problem, Part II, SIAM J. Num. Anal., 23, No 4, 1986, p 750-777. | MR 849281 | Zbl 0611.76036

[13] J. Kim, On the initial-boundary value problem for a Bingham fluid in a threedimensional domain, Trans. Amer. Math. Soc., Vol. 304, No 2, 1987, p. 751-770. | MR 911094 | Zbl 0635.35054

[14] J. Kim, Semi-discretization Method for three dimensional motion of a Bingham fluid, preprint. | Zbl 0706.35113

[15] J. L. Lions, Quelques Methodes de Resolution des Problèmes aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris, 1969. | MR 259693 | Zbl 0189.40603

[16] R. Temam, Une Methode d'Approximation de la Solution des Equations deNavier-Stokes, Bull. Soc. Math. France, Vol. 96, 1968, p. 115-152. | Numdam | MR 237972 | Zbl 0181.18903

[17] R. Teman, Navier-Stokes Equations, North-Holland, Amsterdam-New York-Oxford, 1984. | MR 769654 | Zbl 0568.35002

[18] R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, SIAM, Philadelphia, 1983. | MR 764933 | Zbl 0833.35110

[19] H. Triebel, Interpolation Theory,Function spaces, Differential Operators, North-Holland, Amsterdam-New-Oxford, 1978. | MR 503903 | Zbl 0387.46032