Stability of schemes for the numerical treatment of an equation modelling fluidized beds
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 23 (1989) no. 2, p. 191-204
@article{M2AN_1989__23_2_191_0,
     author = {Abia, L. and Christie, I. and Sanz-Serna, J. M.},
     title = {Stability of schemes for the numerical treatment of an equation modelling fluidized beds},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {23},
     number = {2},
     year = {1989},
     pages = {191-204},
     zbl = {0674.76022},
     mrnumber = {1001327},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1989__23_2_191_0}
}
Abia, L.; Christie, I.; Sanz-Serna, J. M. Stability of schemes for the numerical treatment of an equation modelling fluidized beds. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 23 (1989) no. 2, pp. 191-204. http://www.numdam.org/item/M2AN_1989__23_2_191_0/

[1] Christie and G. H. Ganser, A numerical study of nonlinear waves arising in a one-dimensional model of a fluidized bed, J. Comput. Phys. (to appear). | MR 994350 | Zbl 0662.76030

[2] J. De Frutos and J. M. Sanz-Serna, h-dependent thresholds avoid the need for a priori bounds in nonlinear convergence proofs, Proceedings of the Third International Conference on Numerical Analysis and its Applications, January 1988, Benin, City, Nigeria. Edited by Simeon Ola Fatunla (to appear).

[3] G. H Ganser and D. A. Drew, Nonlinear analysis of a uniform fluidized bed, submitted.

[4] G. H Ganser and D. A. Drew, Nonlinear periodic waves in a two-phase flow model, SIAM J. Appl. Math 47 (1987), pp. 726-736. | MR 898830 | Zbl 0634.76100

[5] R. D. Grigorieff, Numerik gewohnlicher Differentialgleichungen, Teubner, Stuttgart, 1972. | MR 468207 | Zbl 0249.65051

[6] C. Palencia and J. M. Sanz-Serna, Equivalence theorems for incomplete spaces : an appraisal, IMA J. Numer. Anal. 4 (1984), pp. 109-115. | MR 740788 | Zbl 0559.65033

[7] J. M. Sanz-Serna and C. Palencia, A general equivalence theorem in the theory of discretization methods, Math. Comput. 45 (1985), pp. 143-152. | MR 790648 | Zbl 0599.65034

[8] J. M. Sanz-Serna and J. G. Verwer, Stability and convergence in the PDE/stiff ODE interface, Appl. Numer. Math. (to appear). | MR 979551 | Zbl 0671.65078

[9] V. Thomee, Stability theory for partial difference operators. SIAM Rev. 11 (1969), pp. 152-195. | MR 250505 | Zbl 0176.09101

[10] F. Vadillo and J. M. Sanz-Serna, Studies in numerical nonlinear instability in a new look at u1 + uur = 0, J. Comput. Phys. 66 (1986), pp. 225-238. | MR 865708 | Zbl 0612.65053

[11] G. Verwer and J. M. Sanz-Serna, Convergence of method of lines approximations to partial differential equations, Computing 33 (1984), pp. 297-313. | MR 773930 | Zbl 0546.65064