A spectral-Tau approximation for the Stokes and Navier-Stokes equations
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 22 (1988) no. 4, p. 677-693
@article{M2AN_1988__22_4_677_0,
     author = {Shen, Jie},
     title = {A spectral-Tau approximation for the Stokes and Navier-Stokes equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {22},
     number = {4},
     year = {1988},
     pages = {677-693},
     zbl = {0657.76031},
     mrnumber = {974293},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1988__22_4_677_0}
}
Shen, Jie. A spectral-Tau approximation for the Stokes and Navier-Stokes equations. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 22 (1988) no. 4, pp. 677-693. http://www.numdam.org/item/M2AN_1988__22_4_677_0/

[1] K. Arrow, L. Hurwicz & H. Uzawa, Studies in non-linear programming; Stanford univ. Press, Stanford (1958). | MR 108399 | Zbl 0091.16002

[2] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers; Raior. Anal. Numer. 8-R2 129-151 (1974). | Numdam | MR 365287 | Zbl 0338.90047

[3] C. Bernardi, C. Canuto & Y. Maday, Generalized inf-sup condition for Chebychev approximation of the Navier-Stokes equations; IAN Report, N. 533, Pavia, Italy (1986).

[4] C. Bernardi, Y. Maday & B. Métivet, Spectral approximation of the periodic non-periodic Navier-Stokes equations; to appear in Numer. Math. | MR 914344 | Zbl 0583.65085

[5] C. Bernardi, Y. Maday & B. Métivet, Calcul de la pression dans la résolution spectrale des problèmes de Sotkes; La Recherche Aérospatiale, No. 1, 1-21 (1987). | MR 904608 | Zbl 0642.76037

[6] C. Canuto & A. Quarteroni, Spectral & pseudo-spectral methods for parabolic problems with non-periodic boudary conditions; Calcolo, vol. XVIII, fasi. III (1981). | MR 647825 | Zbl 0485.65078

[7] C. Canuto & A. Quarteroni, Approximation results for orthogonal polynomials in Sobolev spaces; Math. Comp. vol. 38, No. 157, 67-86 (1982). | MR 637287 | Zbl 0567.41008

[8] U. Ehrenstein, Méthodes spectrales de résolution des équations de Stokes et de Navier-Stokes. Application à des écoulements de convection double diffusive; Thèse, univ. de Nice (1986).

[9] V. Girault & P. A. Raviart, Finite element approximation of the Navier-Stokes equations; Springer-Verlag (1986). | MR 548867 | Zbl 0413.65081

[10] P. Haldenwang, G. Labrosse, S. Abboudi & M. Deville, Chebychev 3-D and 2-D pseudo-spectral solver for the Helmholtz equations; J. Comp. Phy. vol. 55, 115-128 (1984). | MR 757426 | Zbl 0544.65071

[11] D. B. Haidvogel & T. Zang, The accurate solution of Poisson equation in Chebychev polynomials; J. Comp. Phy. vol. 30, 167-180 (1979). | MR 528198 | Zbl 0397.65077

[12] L. Kleiser & Schumann, Treatment of incomppressibility and boundary conditions in 3-D numerical spectral simulation of plane channel flow; Proc. of the 3th GAMM conference on numer. methods in fluid mechanics, Viewig-Verlag Braunschweig, 165-173 (1980). | Zbl 0463.76020

[13] G. Sacchi Landeriani, Spectral Tau approximation of the two dimensional Stokes problem; IAN Report, No. 528, Pavia, Italy (1986). | Zbl 0629.76037

[14] R. Temam, Navier-Stokes equations. Theory and numerical analysis; North-Holland (1979). | Zbl 0426.35003

[15] L. B. Zhang, Thèse, univ. de Paris-sud (1987).