Uniform in ε discretization error estimates for convection dominated convection-diffusion problems
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 22 (1988) no. 3, p. 477-498
@article{M2AN_1988__22_3_477_0,
     author = {Lube, G.},
     title = {Uniform in $\varepsilon $ discretization error estimates for convection dominated convection-diffusion problems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {22},
     number = {3},
     year = {1988},
     pages = {477-498},
     zbl = {0659.65092},
     mrnumber = {958880},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1988__22_3_477_0}
}
Lube, G. Uniform in $\varepsilon $ discretization error estimates for convection dominated convection-diffusion problems. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 22 (1988) no. 3, pp. 477-498. http://www.numdam.org/item/M2AN_1988__22_3_477_0/

[1] O. Axelsson, Stability and error estimates of Galerkin finite element approximations for convection-diffusion equations, I.M.A. Journal Num. Anal., 1 (1981), 329-345 | MR 641313 | Zbl 0508.76069

[2] O. Axelsson, On the numerical solution of convection dominated convection-diffusion problems, in : Proc. Tagung Math. Physik, Karl-Marx-Stadt 1983,Teubner-Texte, Leipzig 1984. | MR 781752 | Zbl 0563.76084

[3] C. Bardos, J. Rauch, Maximal positive boundary value problems as limits of singular perturbations problems, Transact. Amer. Math. Soc, 270 (1982) 2,377-400. | MR 645322 | Zbl 0485.35010

[4] A. Devinatz, R. Ellis, A. Friedman , The asymptotic behaviour of the first real eigenvalue of second order elliptic operators with a small parameter in the highest derivatives II. Indiana Univ. Math. J., 23 (1974), 991-1011. | MR 344709 | Zbl 0263.35026

[5] A. Felgenhauer, Application of a generalized maximum principle to estimate the corner layers in the n-dimensional case, in : Singularly perturbed differential equations and applications (J. Förste ed.), Akademie der Wissenschaften der DDR, Inst. f. Math., Report R-Mech 03/84, Berlin 1984, 1-8.

[6] M. B. Gilles, M. E. Rose, A numerical study of the steady scalar convective diffusion equation for small viscosity, J. Comput. Phys. 56 (1984), 513-529. | MR 768674 | Zbl 0572.76087

[7] H. Goering, A. Felgenhauer, G. Lube, H. G. Roos, L. Tobiska, Singularly perturbed differential equations, Math. Research, v. 13, Akademie-Verlag Berlin 1983. | MR 718115 | Zbl 0522.35003

[8] T. J. R. Hughes, A. Brooks, multidimensional upwind scheme with no crosswind diffusion, in : AMD v. 34, Finite element methods for convection dominated flows (T. J. R. Hughes ed.), ASME, New York, 1979. | MR 571679 | Zbl 0423.76067

[9] K. W. Jemeljanov, On a difference scheme for the équation εΔu+au x 1 =f, in : Difference methods for solving boundary value problems containing a small parameter and discontinuous boundary conditions, Isd. Uralskovo nacn. centra AN SSSR, Swerdlowsk 1976, 19-37 (russ.).

[10] C. Johnson, U. Nävert, J. Pitkaranta, Finite element methods for linear hyperbolic problems, Comp. Meth. Appl. Mech. Engrg. 45 (1984), 285-312. | MR 759811 | Zbl 0526.76087

[11] R. B. Kellogg, Analysis of a difference approximation for a singular perturbation problem in two dimensions, in : Proc. Conf. Boundary and interior layers - computational and asymptotic methods (J. J. H. Miller ed.), Dublin 1980, Boole Press 1980, 113-117. | MR 589355 | Zbl 0439.65081

[12] J. J. H. Miller, On the convergence, uniformly in ε, of difference schemes for a two point boundary value problem, in : Numerical analysis of singular perturbation problems (P. W. Hemker and J. J. H. Miller, eds.), Academic Press, London, New York, San Francisco 1979, 467-474. | MR 556537 | Zbl 0419.65051

[13] A. Mizukami, T. J. R. Hughes, A Petrov-Galerkin finite element method for solving convection dominated flows : an accurate upwinding technique for satisfying the maximum principle, Comp. Meth. Appl. Mech. Engrg. 50 (1985),181-193. | MR 802339 | Zbl 0553.76075

[14] U. Nävert, A finite element method for convection-diffusion problems, Thesis, Chalmers Univ. of Technol., Gothenburg, Sweden 1982.

[15] K. Niijima, On a three-point difference scheme for a singular perturbation problem without a first derivative term, Mem. Num. Math. 7 (1980). | MR 588462 | Zbl 0484.65054

[16] M. H. Protter, H. F. Weinberger, Maximum principles in differential equations, Englewood Cliffs, New Jersey, Prentice-Hall, Inc., 1967. | MR 219861 | Zbl 0153.13602

[17] U. Risch, Ein hybrides upwind-FEM-Verfahren und dessen Anwendung auf schwach gekoppelte elliptische Differentialgleichungen mit dominanter Konvektion, Dissertation, Techn. Hochschule Magdeburg 1986.

[18] A. M. Schatz, L. B. Wahlbin, On the finite element method for singularly perturbed reaction-diffusion problems in two and one dimension, Math. Comp.40 (1983), 47-89. | MR 679434 | Zbl 0518.65080

[19] F. Schieweck, Eine asymptotisch angepafite Finite-Element-Methode fur singulär gestörte elliptische Randwertaufgaben, Dissertation, Techn. Hochschule Magdeburg 1986.

[20] G. I. Shishkin, Solution of a boundary value problem for an elliptic equation with a small parameter affecting the highest derivatives, Shurnal Vytsch. Mat. Mat. Fis., 26 (1986), 1019-1031 (russ.). | MR 851752 | Zbl 0622.65078

[21] G. I. Shishkin, V. A. Titov, A différence scheme for a differential equation with two small parameters affecting the derivatives, Numer. Meth. Mechs. Cont. Media, 7 (1976), 145-155. (russ.) | MR 455427