A variational method for parameter identification
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 22 (1988) no. 1, p. 119-158
@article{M2AN_1988__22_1_119_0,
     author = {Kohn, Robert V. and Lowe, Bruce D.},
     title = {A variational method for parameter identification},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {22},
     number = {1},
     year = {1988},
     pages = {119-158},
     zbl = {0636.65127},
     mrnumber = {934704},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1988__22_1_119_0}
}
Kohn, Robert V.; Lowe, Bruce D. A variational method for parameter identification. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 22 (1988) no. 1, pp. 119-158. http://www.numdam.org/item/M2AN_1988__22_1_119_0/

[1] G. Alessandrini, An identification problem for an elliptic équation in two variables, Ann. Mat. Pura Appl. Vol. 145, 1986, pp. 265-296. | MR 886713 | Zbl 0662.35118

[2] G. Lessandrini, On the identification of the leading coefficient of an elliptic equation, Bolletino U.M.I., Analisi Funzionale e Applicazioni, Serie VI, Vol. IV-C, 1985, pp. 87-111. | MR 805207 | Zbl 0598.35129

[3] H. T. Banks and K. Kunisch, Parameter estimation techniques for nonlinear distributed parameter Systems, Nonlinear phenomena in mathematical sciences, V. Lakshmikantham, ed., Academic Press, 1982, pp. 57-67. | Zbl 0511.93022

[4] J. Bear, Dynamics of Fluids in Porous Media, American Elsevier, New York, 1972.

[5] G. Chavent, Identification of distributed parameter Systems : about the output least square method, its implementation, and identifiability, Proceedings of the 5th IFAC Symposium on Identification and System Parameter Estimation, R. Iserman, ed., Pergamon Press, 1980, Vol. 1, pp. 85-97. | Zbl 0478.93059

[6] C. Chicone and J. Gerlach, A note on the identifiability of distributed parameters in elliptic equations, SIAM J. Math. Anal. Vol. 18, 1987, pp. 1378-1384. | MR 902338 | Zbl 0644.35092

[7] P. G. Ciarlet, Numerical Analysis of the Finite Element Method, University of Montréal Press, 1975. | MR 495010 | Zbl 0363.65083

[8] H. Beirão Da Veiga, On a stationary transport equation, Ann. Univ. Ferrara Sez. VII, Sci. Mat., Vol. 32, 1986, pp. 79-91. | MR 901589 | Zbl 0641.35006

[9] R. S. Falk, Error estimates for the numerical identification of a variable coefficient, Math. Comp. Vol. 40, 1983, pp. 537-546. | MR 689469 | Zbl 0551.65083

[10] E. O. Frind and G. F. Pinder, Galerkin solution of teh inverse problem for aquifer transmissivity, Water Resour. Res., Vol. 9, 1973, pp. 1397-1410.

[11] K. H. Hoffman and J. Sprekels, On the identification of coefficiens of elliptic problems by asymptotic regulariaztion, Num. Finct. Anal. Optimiz. Vol. 7, 1984-85, pp. 157-177. | MR 767380 | Zbl 0576.65121

[12] R. V. Kohn and G. Strang, Optimal design and relaxation of variational problems, Com. Pure Appl. Math. Vol. 39, 1986, pp. 113-137, 139-182, 353-377. | Zbl 0609.49008

[13] R. V. Kohn and M. Vogelius, Relaxation of a variational method for impedance computed tomography, Vol. 40, 1987, pp. 745-777. | MR 910952 | Zbl 0659.49009

[14] C. Kravaris and J. H. Seinfeld, Identification of parameters in distributed parameter systems by regularization, SIAM J. Contr. Optimiz. Vol. 23, 1985, pp. 217-241. | MR 777457 | Zbl 0563.93018

[15] K. Kunisch, Inherent Identifiability : rate of convergence for parameter estimation problems, to appear.

[16] K. Kunisch and L. W. White, Identification under approximation for an elliptic boundary value problem, to appear.

[17] F. Murat, Contre-exemples pour divers problèmes où le contrôle intervient dans les coefficients, Ann., Math. Pura et Appl., Vol. 62, 1977, pp. 49-68. | MR 438205 | Zbl 0349.49005

[18] F. Natterer, The finite element method for ill-posed problems, R.A.I.R.O. Numerical Analysis, Vol. 11, 1977, pp. 271-278. | Numdam | MR 519587 | Zbl 0369.65012

[19] M. P. Polis and R. E. Goodson, Parameter identification in distributed systems : a synthesizing overview, Proceedigns of the IEEE, Vol. 64, 1976, pp. 45-61. | MR 408888 | Zbl 0313.93012

[20] G. R. Richter, An iverse problem for the steady state diffusion equation, SIAM J. Appl. Math., Vol. 41, 1981, pp. 210-221. | MR 628945 | Zbl 0501.35075

[21] G. R. Richter, Numerical identification of a spatially varying diffusion coefficient, Math. Comp. Vol. 36, 1981, pp. 375-386. | MR 606502 | Zbl 0474.65065

[22] R. Scott, Interpolated boundary conditions in the finite element method, SIAM J. Numer, Anal., Vol. 12, 1975, pp. 404-427. | MR 386304 | Zbl 0357.65082

[23] A. Wexler and C. J. Mandel, An impedance computed tomography algorithm and system for ground water and hazardous waste imaging, presented at the Second Annual Canadian/American Conference in Hydrogeology ; Hazardous Wastes in Ground Water : A Soluble Dilemma, June 25-29, 1985, Banff, Alberta, Canada.

[24] A. Wexler, B. Fry and M. R. Neuman, Impedance-computed tomography algorithm and system, Applied Optics, Vol. 24, 1985, pp. 3985-3992.