A variational method for parameter identification
ESAIM: Modélisation mathématique et analyse numérique, Volume 22 (1988) no. 1, pp. 119-158.
@article{M2AN_1988__22_1_119_0,
     author = {Kohn, Robert V. and Lowe, Bruce D.},
     title = {A variational method for parameter identification},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {119--158},
     publisher = {AFCET - Gauthier-Villars},
     address = {Paris},
     volume = {22},
     number = {1},
     year = {1988},
     mrnumber = {934704},
     zbl = {0636.65127},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1988__22_1_119_0/}
}
TY  - JOUR
AU  - Kohn, Robert V.
AU  - Lowe, Bruce D.
TI  - A variational method for parameter identification
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1988
SP  - 119
EP  - 158
VL  - 22
IS  - 1
PB  - AFCET - Gauthier-Villars
PP  - Paris
UR  - http://www.numdam.org/item/M2AN_1988__22_1_119_0/
LA  - en
ID  - M2AN_1988__22_1_119_0
ER  - 
%0 Journal Article
%A Kohn, Robert V.
%A Lowe, Bruce D.
%T A variational method for parameter identification
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1988
%P 119-158
%V 22
%N 1
%I AFCET - Gauthier-Villars
%C Paris
%U http://www.numdam.org/item/M2AN_1988__22_1_119_0/
%G en
%F M2AN_1988__22_1_119_0
Kohn, Robert V.; Lowe, Bruce D. A variational method for parameter identification. ESAIM: Modélisation mathématique et analyse numérique, Volume 22 (1988) no. 1, pp. 119-158. http://www.numdam.org/item/M2AN_1988__22_1_119_0/

[1] G. Alessandrini, An identification problem for an elliptic équation in two variables, Ann. Mat. Pura Appl. Vol. 145, 1986, pp. 265-296. | MR | Zbl

[2] G. Lessandrini, On the identification of the leading coefficient of an elliptic equation, Bolletino U.M.I., Analisi Funzionale e Applicazioni, Serie VI, Vol. IV-C, 1985, pp. 87-111. | MR | Zbl

[3] H. T. Banks and K. Kunisch, Parameter estimation techniques for nonlinear distributed parameter Systems, Nonlinear phenomena in mathematical sciences, V. Lakshmikantham, ed., Academic Press, 1982, pp. 57-67. | Zbl

[4] J. Bear, Dynamics of Fluids in Porous Media, American Elsevier, New York, 1972.

[5] G. Chavent, Identification of distributed parameter Systems : about the output least square method, its implementation, and identifiability, Proceedings of the 5th IFAC Symposium on Identification and System Parameter Estimation, R. Iserman, ed., Pergamon Press, 1980, Vol. 1, pp. 85-97. | Zbl

[6] C. Chicone and J. Gerlach, A note on the identifiability of distributed parameters in elliptic equations, SIAM J. Math. Anal. Vol. 18, 1987, pp. 1378-1384. | MR | Zbl

[7] P. G. Ciarlet, Numerical Analysis of the Finite Element Method, University of Montréal Press, 1975. | MR | Zbl

[8] H. Beirão Da Veiga, On a stationary transport equation, Ann. Univ. Ferrara Sez. VII, Sci. Mat., Vol. 32, 1986, pp. 79-91. | MR | Zbl

[9] R. S. Falk, Error estimates for the numerical identification of a variable coefficient, Math. Comp. Vol. 40, 1983, pp. 537-546. | MR | Zbl

[10] E. O. Frind and G. F. Pinder, Galerkin solution of teh inverse problem for aquifer transmissivity, Water Resour. Res., Vol. 9, 1973, pp. 1397-1410.

[11] K. H. Hoffman and J. Sprekels, On the identification of coefficiens of elliptic problems by asymptotic regulariaztion, Num. Finct. Anal. Optimiz. Vol. 7, 1984-85, pp. 157-177. | MR | Zbl

[12] R. V. Kohn and G. Strang, Optimal design and relaxation of variational problems, Com. Pure Appl. Math. Vol. 39, 1986, pp. 113-137, 139-182, 353-377. | Zbl

[13] R. V. Kohn and M. Vogelius, Relaxation of a variational method for impedance computed tomography, Vol. 40, 1987, pp. 745-777. | MR | Zbl

[14] C. Kravaris and J. H. Seinfeld, Identification of parameters in distributed parameter systems by regularization, SIAM J. Contr. Optimiz. Vol. 23, 1985, pp. 217-241. | MR | Zbl

[15] K. Kunisch, Inherent Identifiability : rate of convergence for parameter estimation problems, to appear.

[16] K. Kunisch and L. W. White, Identification under approximation for an elliptic boundary value problem, to appear.

[17] F. Murat, Contre-exemples pour divers problèmes où le contrôle intervient dans les coefficients, Ann., Math. Pura et Appl., Vol. 62, 1977, pp. 49-68. | MR | Zbl

[18] F. Natterer, The finite element method for ill-posed problems, R.A.I.R.O. Numerical Analysis, Vol. 11, 1977, pp. 271-278. | Numdam | MR | Zbl

[19] M. P. Polis and R. E. Goodson, Parameter identification in distributed systems : a synthesizing overview, Proceedigns of the IEEE, Vol. 64, 1976, pp. 45-61. | MR | Zbl

[20] G. R. Richter, An iverse problem for the steady state diffusion equation, SIAM J. Appl. Math., Vol. 41, 1981, pp. 210-221. | MR | Zbl

[21] G. R. Richter, Numerical identification of a spatially varying diffusion coefficient, Math. Comp. Vol. 36, 1981, pp. 375-386. | MR | Zbl

[22] R. Scott, Interpolated boundary conditions in the finite element method, SIAM J. Numer, Anal., Vol. 12, 1975, pp. 404-427. | MR | Zbl

[23] A. Wexler and C. J. Mandel, An impedance computed tomography algorithm and system for ground water and hazardous waste imaging, presented at the Second Annual Canadian/American Conference in Hydrogeology ; Hazardous Wastes in Ground Water : A Soluble Dilemma, June 25-29, 1985, Banff, Alberta, Canada.

[24] A. Wexler, B. Fry and M. R. Neuman, Impedance-computed tomography algorithm and system, Applied Optics, Vol. 24, 1985, pp. 3985-3992.