Superconvergence of the gradient of Galerkin approximations for elliptic problems
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 21 (1987) no. 4, p. 679-695
@article{M2AN_1987__21_4_679_0,
     author = {Nakao, Mitsuhiro T.},
     title = {Superconvergence of the gradient of Galerkin approximations for elliptic problems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {21},
     number = {4},
     year = {1987},
     pages = {679-695},
     zbl = {0642.65073},
     mrnumber = {921833},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1987__21_4_679_0}
}
Nakao, Mitsuhiro T. Superconvergence of the gradient of Galerkin approximations for elliptic problems. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 21 (1987) no. 4, pp. 679-695. http://www.numdam.org/item/M2AN_1987__21_4_679_0/

[1] R. A. Adams, Sobolev spaces, Academic Press (1975) | MR 450957 | Zbl 0314.46030

[2] M. Bakker, A note on C° Galerkin methods for two point boundary problems, Numer. Math. 38 (1982) 447-453. | MR 654109 | Zbl 0462.65053

[3] M. Bakker, One-dimensional Galerkin methods and superconvergenceatinterior nodal points, SIAM J. Numer. Anal. 21 (1984) 101-110. | MR 731215 | Zbl 0571.65078

[4] C. Chen, Superconvergence of finite element solutions and its derivatives, Numerical Mathematics, 2 (1981), 118-125 (Chinese). | MR 635547 | Zbl 0511.65080

[5] J. F. Ciavaldini & M. Crouzeix, finite element method scheme for onedimensional elliptic équations with high super convergence at the node, , Numer.Math. 46 (1985) 417-427. | MR 791699 | Zbl 0548.65067

[6] J. Jr. Douglas, & T. Dupont, Galerkin approximations for the two pointboundary problem using continuous pieeewise polynomial spaces, Numer. Math.22 (1974) 99-109. | MR 362922 | Zbl 0331.65051

[7] J. Jr. Douglas T. Dupont & M. F. Wheeler, An L°° estimate and asuperconvergence resuit for a Galerkin method for elliptic équations based ontensor products of pieeewise polynomials, RAIRO 8 (1974) 61-66. | Numdam | MR 359358 | Zbl 0315.65062

[8] M. Krizek & P. Neittaanmàki, Superconvergence phenomenon in the finite element method arising from averaging gradients, , Numer. Math. 45 (1984) 105-116. | MR 761883 | Zbl 0575.65104

[9] P. Lesaint & M. Zlâmal, Superconvergence of the gradient of finite element solutions, RAIRO Anal. Numer. 13 (1979), 139-166. | Numdam | MR 533879 | Zbl 0412.65051

[10] N. Levine, Superconvergent recovery of the gradient from pieceewise linear finite-element approximations, IMA J. Numer. Anal. 5 (1985) 407-427. | MR 816065 | Zbl 0584.65067

[11] M. Nakao, Some superconvergence estimates for a Galerkin method for elliptic problems, Bull. Kyushu Inst. Tech. (Math. Natur. Sci.), 31 (1984) 49-58. | MR 763228 | Zbl 0575.65105

[12] M. T. Nakao, L error estimates and superconvergence results for a collocation-H -1 -Galerkin method for elliptic equations, Memoirs of the Faculty of Science, Kyushu University, Ser. A, 39 (1985) 1-25. | MR 783218 | Zbl 0584.65073

[13] M. T. Nakao, Some superconvergence of Galerkin approximations for parabolic and hyperbolic problems in one space dimension, Bull. Kyushu Inst. Tech. (Math. Natur. Sci.) 32 (1985) 1-14. | MR 797452 | Zbl 0623.65119

[14] M. T. Nakao, Error estimates of a Galerkin method for some nonlinear Sobolev equations in one space dimension, Numer. Math. 47 (1985) 139-157. | MR 797883 | Zbl 0575.65112

[15] L. A. Oganesyan and L. A. Rukhovets, Study of the rate of convergence of variational difference schemes for second order elliptic equations in a two dimensional field with a smooth boundary, USSR Comp. Math, and Math.hysics, 9 (1969) 158-183. | Zbl 0241.65073

[16] R. Rannacher & R. Scott, Some optimal error estimates for piecewise linear finite element approximations, Math. Comp. 38 (1982) 437-445. | MR 645661 | Zbl 0483.65007

[17] A. H. Schatz, A weak discrete maximum principle and stability of the finite element method in L on plane polygonal domains I, Math. Comp. 34 (1980) 77-99. | MR 551291 | Zbl 0425.65060

[18] Q. Z H U, Uniform superconvergence estimates of derivatives for the finite elementmethod, Numerical Mathematics, 4 (1983) 311-318 (Chinese). | Zbl 0549.65073