Approximation spectral d'un opérateur borné et normal à l'aide de ses fonctions de la densité spectrale
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 17 (1983) no. 1, p. 93-109
@article{M2AN_1983__17_1_93_0,
     author = {Moszy\'nski, Krzysztof},
     title = {Approximation spectral d'un op\'erateur born\'e et normal \`a l'aide de ses fonctions de la densit\'e spectrale},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {17},
     number = {1},
     year = {1983},
     pages = {93-109},
     zbl = {0523.65041},
     mrnumber = {695453},
     language = {fr},
     url = {http://www.numdam.org/item/M2AN_1983__17_1_93_0}
}
Moszyński, Krzysztof. Approximation spectral d'un opérateur borné et normal à l'aide de ses fonctions de la densité spectrale. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 17 (1983) no. 1, pp. 93-109. http://www.numdam.org/item/M2AN_1983__17_1_93_0/

1. A. K. Aziz Mathematical foundations of the finite element method. New York, 1972. | Zbl 0268.65052

2. C. L. Lawson, R. J. Hanson, Solving least squares problems. Prentice-Hall, 1974. | MR 366019 | Zbl 0860.65028

3. S. Lojasiewicz, Wstep do teorii funkcji rzeczywistych. PWN Warszawa, 1973. | MR 432826

4. K. Moszynskj, On approximation of the spectral density function of a self adjoint operator. To appear in Studia Scientiarum Mathematicarum Hungarica, N° 14, 1979. | Zbl 0439.47018

5. K. Moszynski, Approximation of the spectrum of a bounded, normal operator with the help of its spectral density functions. Preprint N°249. Institute of Mathematics, Polish Academy of Sciences, Warsaw, oct. 1981. | Zbl 0472.47004

6. Sz. F. Riesz, B. Nagy, Leçons d'analyse fonctionnelle. Akademiai Kiado. Budapest, 1952. | Zbl 0122.11205

7. T. J. Rivlin, An introduction to the approximation of functions. Blaisdell Publ., 1969. | MR 634509 | Zbl 0189.06601

8. A. Sard, Linear approximation. AMS 1963. | MR 158203 | Zbl 0115.05403

9. A. H. Stroud, Approximate calculation of multiple intégrals. Prentice-Hall, 1971. | MR 327006 | Zbl 0379.65013