On a theorem of Legendre in the theory of continued fractions
Journal de Théorie des Nombres de Bordeaux, Tome 6 (1994) no. 1, pp. 81-94.
@article{JTNB_1994__6_1_81_0,
     author = {Barbolosi, Dominique and Jager, Hendrik},
     title = {On a theorem of {Legendre} in the theory of continued fractions},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {81--94},
     publisher = {Universit\'e Bordeaux I},
     volume = {6},
     number = {1},
     year = {1994},
     zbl = {0811.11049},
     mrnumber = {1305288},
     language = {en},
     url = {http://www.numdam.org/item/JTNB_1994__6_1_81_0/}
}
TY  - JOUR
AU  - Barbolosi, Dominique
AU  - Jager, Hendrik
TI  - On a theorem of Legendre in the theory of continued fractions
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 1994
DA  - 1994///
SP  - 81
EP  - 94
VL  - 6
IS  - 1
PB  - Université Bordeaux I
UR  - http://www.numdam.org/item/JTNB_1994__6_1_81_0/
UR  - https://zbmath.org/?q=an%3A0811.11049
UR  - https://www.ams.org/mathscinet-getitem?mr=1305288
LA  - en
ID  - JTNB_1994__6_1_81_0
ER  - 
Barbolosi, Dominique; Jager, Hendrik. On a theorem of Legendre in the theory of continued fractions. Journal de Théorie des Nombres de Bordeaux, Tome 6 (1994) no. 1, pp. 81-94. http://www.numdam.org/item/JTNB_1994__6_1_81_0/

[1] D. Barbolosi, Fractions continues à quotients partiels impairs, Thèse, Université de Provence, Marseille (1988).

[2] P. Billingsley, Ergodic Theory and Information, John Wiley and Sons, New York, London, Sydney (1965). | MR 192027 | Zbl 0141.16702

[3] W. Bosma, H. Jager and F. Wiedijk, Some metrical observations on the approximation by continued fractions, Indag. Math. 4 (1983), 281-299. | MR 718069 | Zbl 0519.10043

[4] P. Fatou, Sur l'approximation des incommensurables et les séries trigonométriques, C. R. Acad. Sci. Paris 139 (1904), 1019-1021. | JFM 35.0275.02

[5] J.H. Grace, The classification of rational approximations, Proc. London Math. Soc. 17 (1918), 247-258. | JFM 47.0166.01

[6] S. Ito and H. Nakada, On natural extensions of transformations related to Diophantine approximations, Proceedings of the Conference on Number Theory and Combinatorics, Japan 1984, World Scientific Publ. Co., Singapore (1985), 185-207. | MR 827784 | Zbl 0623.10008

[7] S. Ito, On Legendre's Theorem related to Diophantine approximations, Séminaire de Théorie des Nombres, Bordeaux, exposé 44 (1987-1988), 44-01-44-19. | Zbl 0714.11037

[8] H. Jager and C. Kraaikamp, On the approximation by continued fractions, Indag. Math. 51 (1989), 289-307. | MR 1020023 | Zbl 0695.10029

[9] J.F. Koksma, Diophantische Approximationen, Julius Springer, Berlin (1936). | MR 344200 | Zbl 0012.39602

[10] J.F. Koksma, Bewijs van een stelling over kettingbreuken, Mathematica A 6 (1937),226-231. | JFM 63.0923.02 | Zbl 0018.05302

[11] J.F. Koksma, On continued fractions, Simon Stevin 29 (1951/52), 96-102. | MR 50640 | Zbl 0047.28302

[12] C. Kraaikamp, A new class of continued fractions, Acta Arith. 57 (1991), 1-39. | MR 1093246 | Zbl 0721.11029

[13] A.M. Legendre, Essai sur la théorie des nombres, Duprat, Paris, An VI (1798). | JFM 30.0201.03

[14] F. Schweiger, On the approximation by continued fractions with odd and even partial quotients, Mathematisches Institut der Universität Salzburg, Arbeitsbericht 1-2 (1984), 105-114.