Investigating Gene- and Pathway-environment Interaction analysis approaches
Journal de la société française de statistique, Tome 159 (2018) no. 2, pp. 56-83.

Les analyses par pathway permettent d’augmenter la puissance statistique en combinant les signaux au niveau des SNPs pour définir des associations au niveau du gène et/ou du pathway. Dans cette étude, nous proposons d’adapter deux méthodes d’analyse par pathway, la méthode de Fisher (FM) et la méthode ARTP (Adaptive Rank Truncated Product), pour l’analyse des interactions gène-environnement (GxE) au niveau du gène et au niveau du pathway. Il a été précédemment suggéré que les procédures de permutations habituellement utilisées pour estimer la significativité de ces tests ne sont pas appropriées pour l’analyse des interactions GxE et devraient être remplacés par une approche Bootstrap. Ainsi, nous analysons et comparons dans une étude de simulation les performances de l’extension des méthodes FM et ARTP en utilisant une procédure de permutation et une méthode de Bootstrap paramétrique. Ces méthodes sont également appliquées aux données de l’étude cas-témoins CECILE sur les cancers du sein dans laquelle nous avons analysé l’interaction entre le travail de nuit et les polymorphismes des gènes circadiens dans le risque de cancer du sein. La méthode ARTP adaptée aux interactions GxE donne des résultats prometteurs. Un package R PIGE a été développé et est mis à disposition sur le CRAN.

Pathway analysis can increase power to detect associations with a gene or a pathway by combining several signals at the single nucleotide polymorphism (SNP)-level into a single test. In this work, we propose to extend two well-known self-contained methods, the Fisher’s method (FM) and the Adaptive Rank Truncated Product (ARTP) method to the analysis of gene-environment (GxE) interaction at the gene and pathway-level. It has been previously suggested that the permutation procedures that are usually used to derive the significance of these tests are not appropriate for the analysis of GxE interaction and should be replaced by a bootstrap approach. We analyse and compare the performance of the extension of FM and ARTP using the permutation and the parametric bootstrap procedure in simulation studies. We illustrate its application by analysing the interaction between night work and circadian gene polymorphisms in the risk of breast cancer in a case-control study. The ARTP method, adapted for both gene- and pathway-environment interactions, gives promising results and has been wrapped to the R package PIGE available on the CRAN.

Mots clés : Interaction gène-environnement, Modèles linéaire généralisés, Analyse par pathway, Méthodes de rééchantillonage
@article{JSFS_2018__159_2_56_0,
     author = {Broc, Camilo and Evangelou, Marina and Truong, Therese and Guenel, Pascal and Liquet, Benoit},
     title = {Investigating {Gene-} and {Pathway-environment} {Interaction} analysis approaches},
     journal = {Journal de la soci\'et\'e fran\c{c}aise de statistique},
     pages = {56--83},
     publisher = {Soci\'et\'e fran\c{c}aise de statistique},
     volume = {159},
     number = {2},
     year = {2018},
     zbl = {1406.62134},
     language = {en},
     url = {http://www.numdam.org/item/JSFS_2018__159_2_56_0/}
}
TY  - JOUR
AU  - Broc, Camilo
AU  - Evangelou, Marina
AU  - Truong, Therese
AU  - Guenel, Pascal
AU  - Liquet, Benoit
TI  - Investigating Gene- and Pathway-environment Interaction analysis approaches
JO  - Journal de la société française de statistique
PY  - 2018
DA  - 2018///
SP  - 56
EP  - 83
VL  - 159
IS  - 2
PB  - Société française de statistique
UR  - http://www.numdam.org/item/JSFS_2018__159_2_56_0/
UR  - https://zbmath.org/?q=an%3A1406.62134
LA  - en
ID  - JSFS_2018__159_2_56_0
ER  - 
Broc, Camilo; Evangelou, Marina; Truong, Therese; Guenel, Pascal; Liquet, Benoit. Investigating Gene- and Pathway-environment Interaction analysis approaches. Journal de la société française de statistique, Tome 159 (2018) no. 2, pp. 56-83. http://www.numdam.org/item/JSFS_2018__159_2_56_0/

[1] Albert, P.S.; Ratnasinghe, D.; Tangrea, J.; S., Wacholder Limitations of the case-only design for identifying gene-environment interactions, American Journal of Epidemiology, Volume 154 (2001), pp. 687-693

[2] Buzkova, Petra; Lumley, Thomas; Rice, Kenneth Permutation and parametric bootstrap tests for gene-gene and gene-environment interactions, American Journal of Human Genetics, Volume 75 (2011) no. 1, pp. 36-45

[3] Carbonetto, P; Stephens, M Integrated enrichment analysis of variants and pathways in genome-wide association studies indicates central for for IL-2 signaling genes in type 1 diabetes and cytokine signaling genes in Crohn’s disease, PLoS Genetics, Volume 9 (2013)

[4] Carpen, JD.; von Schantz, M.; Smits, M.; Skene, D.J.; Archer, SN. A silent polymorphism in the PER1 gene associates with extreme diurnal preference in humans, Journal of Human Genetics, Volume 51 (2006), pp. 1122-1125

[5] Dudbridge, F.; Koeleman, B.P. Rank truncated product of P-values, with application to genomewide association scans, Genetic Epidemiology, Volume 25 (2003), pp. 360-366

[6] de Leeuw, C.A.; Neale, B.M.; Heskes, T.; Posthuma, D. The statistical properties of gene-set analysis, Nature Reviews Genetics, Volume 17 (2016), pp. 353-364

[7] Edgington, E.S. Randomization tests, Statistics, textbooks and monographs, M. Dekker, 1987 https://books.google.fr/books?id=LRXvAAAAMAAJ | Zbl 0629.62003

[8] Evangelou, M.; Dudbridge, F.; Wernisch, L. Two novel pathway analysis methods based on a hierarchical model., Bioinformatics, Volume 30 (2014) no. 5, pp. 690-697

[9] Evangelou, Marina; Rendon, Augusto; Ouwehand, Willem H; Wernisch, Lorenz; Dudbridge, Frank Comparison of methods for competitive tests of pathway analysis, PloS one, Volume 7 (2012) no. 7 | Article

[10] Evangelou, M.; Smyth, D.J.; Fortune, M.D.; Burren, O.S.; Walker, N.M.; Guo, H.; Onengut-Gumuscu, S.; Chen, W.; Concannon, P.; Rich, S.S.; Todd, J.A.; Wallace, C. A Method for Gene-Based Pathway Analysis Using Genomewide Association Study Summary Statistics Reveals Nine New Type 1 Diabetes Associations, Genetic Epidemiology, Volume 38 (2014) no. 8, pp. 661-670

[11] Efron, B.; Tibshirani, R. An Introduction to the Bootstrap (Chapman & Hall/CRC Monographs on Statistics & Applied Probability), Chapman and Hall/CRC, London, 1994 | Zbl 0835.62038

[12] Fridley, BL; Biernacka, JM Gene set analysis of SNP data: benefits, challenges and future directions, European Journal of Human Genetics, Volume 19 (2011), pp. 837-843

[13] Ge, Youngchao; Dudoit, Sandrine; Speed, Terrence P. Resampling-based multiple testing for microarray data analysis, Test, Volume 12 (2003) no. 1, pp. 1-77 | Zbl 1056.62117

[14] Good, P. Permutation Tests: Permutation Tests: A Practical Guide to Resampling Methods for Testing Hypotheses, Springer-Verlag, New-York, 2000

[15] Holmans, P.; Green, E. K.; Pahwa, J. S.; Ferreira, M. A.; Purcell, S. M.; Sklar, P.; Consortium, Wellcome Trust Cace-Control; Owen, M. J.; MC’Donovan, O.; Carddock, N. Gene ontology analysis of GWA study data sets provides insights into the biology of bipolar disorder., American Journal of Human Genetics, Volume 85 (2009), pp. 13-24

[16] Hansen, J.; Lassen, C.F. Nested case control study shift work and breast cancer risk among women in the Danish military, Occupational and Environmental Medicine, Volume 69 (2012), pp. 551-556

[17] Ionita-Laza, I.; Lee, S.; Makarov, V.; Buxbaum, J.; Lin, X. Sequence kernel association tests for the combined effect of rare and common variants, American Journal of Human Genetics, Volume 92 (2013), pp. 841-853

[18] Jiao, S; Hsu, L; Bezleau, S; Brenner, H.; Chan, A.T.; Chang-Claude, J.; Le Marchand, L; Lemire, M.; Newcomb, P.A.; Slattery, M.L.; Peters, U. SBERIA: set-based gene-environment interaction test for rare and common variants in complex diseases, Genetic Epidemiology, Volume 37 (2013) no. 5, pp. 452-464

[19] Jiao, S; Peters, U.; Berndt, S.; Bezleau, S.; Brenner, H.; Campbell, P.T.; Chan, A.T.; Chang-Claude, J.; Lemire, M.; Newcomb, P.A.; Potter, J.D.; Slattery, M.L.; Woods, M.O.; Hsu, L. Powerful Set-Based Gene-Environment Interaction Testing Framework for Complex Diseases, Genetic Epidemiology, Volume 39 (2015), pp. 609-618

[20] Lin, X.; Lee, S.; Christiani, D.C.; Lin, X. Test for interactions between a genetic marker set and environment in generalized linear models, Biostatistics, Volume 14 (2013) no. 4, pp. 667-681

[21] Lin, Xinyi; Lee, Seunggeun; Wu, Michael C; Wang, Chaolong; Chen, Han; Li, Zilin; Lin, Xihong Test for rare variants by environment interactions in sequencing association studies, Biometrics, Volume 72 (2016) no. 1, pp. 156-164 | Zbl 1393.62124

[22] Liquet, Benoit; Riou, Jérémie Correction of the significance level when attempting multiple transformations of an explanatory variable in generalized linear models, BMC Medical Research Methodology, Volume 13 (2013) no. 1 | Article

[23] Liquet, Benoit; Truong, Therese; Broc, Camilo PIGE: Self Contained Gene Set Analysis for Gene- And Pathway-Environment Interaction Analysis (2017) https://CRAN.R-project.org/package=PIGE (R package version 1.1)

[24] Manolio, TA; Collins, FS; Cox, NJ; Goldstein, DB; Hindorff, LA; DJ, Hunter; McCarthy, MI; Ramos, EM; Cardon, LR; Chakravarti, A; Cho, JH; Guttmacher, AE; Kong, A; Kruglyak, L; Mardis, E; Rotimi, CN; Slatkin, M; Valle, D; Whittemore, AS; Boehnke, M; Clark, AG; Eichler, EE; Gibson, G; Haines, JL; Mackay, TF; McCarroll, SA; Visscher, PM Functional and genomic context in pathway analysis of GWAS data, Nature, Volume 461 (2009) no. 7265, p. 747-53

[25] Mooney, MA; Nigg, JT; McWeeney, SK; Wilmot, Beth Functional and genomic context in pathway analysis of GWAS data, Trends in Genetics, Volume 30 (2014) no. 9, pp. 390-400

[26] Menegaux, F.; Truong, T.; Anger, A.; Cordina-Duverger, E.; Lamkarkach, F.; Arveux, P.; Kerbrat, P.; Fevotte, J.; Guenel, P. Night work and breast cancer: a population-based case control study in France (the CECILE study), International Journal of Cancer, Volume 132 (2013), pp. 924-931

[27] O’Dushlaine, C; Heron, E. A.; Segurado, R.; Gill, M.; Morris, D. W.; Corvin, A. The SNP ratio test: pathway analysis of genome-wide association datasets, Bioinformatics, Application Note, Volume 25 (2009), pp. 2762-2763

[28] Pers, TH Gene set analysis for interpreting genetic studies, Human molecular genetics, Volume 25 (2016) no. R2, p. R133-R140

[29] Straif, K.; Baan, R.; Grosse, Y.; Secretan, B.; El Ghissassi, F.; Bouvard, V.; Altieri, A.; Benbrahim-Tallaa, L.; Cogliano, V. Carcinogenicity of shift-work, painting, and fire-fighting, Lancet Oncology, Volume 8 (2007), pp. 1065-1066

[30] Su, Y.; Gauderman, W. J.; Berhane, K; Lewinger, J. P. Adaptive Set-Based Methods for Association Testing., Genetic Epidemiology, Volume 40 (2016), pp. 113-122

[31] Shahbaba, B; Shachaf, C M; Yu, Z A pathway analysis method for genome-wide association studies, Statistics in Medicine, Volume 31 (2012), pp. 988-1000 | MR 2913874

[32] Truong, T; Liquet, B; Menegaux, M; Plancoulaine, S; Laurent-Puig, P; Mulot, C; Cordina-Duverger, E; Sanchez, M; Arveux, P; Kerbrat, P; Richardson, S; Guenel, P Breast cancer risk, nightwork and circadian clock gene polymorphisms, Endocrine-related cancer, Volume 21 (2014) no. 4, p. 629-38

[33] Wang, L; Jia, P; Wolfinger, RD; Chen, X; Zhao, Z Gene set analysis of genome-wide association studies: Methodological issues and perspectives, Genomics, Volume 98 (2011) no. 1, pp. 1-8

[34] Wang, K; Li, M; Bucan, M Pathway-based approaches for analysis of genomewide association studies, American Journal of Human Genetics, Volume 81 (2007), pp. 1278-1283

[35] Wu, M.C.; Lee, S.; Cai, T.; Li, Y.; Boehnke, M.; Lin, X. Rare-Variant Association Testing for Sequencing Data with the Sequence Kernel Association Test, American Journal of Human Genetics, Volume 89 (2011), pp. 82-93

[36] Yu, Kai; Li, Qizhai; andrew W., Bergen; Pfeiffer, Ruth M.; Rosenberg, Philip S.; Caporaso, Neil; Kraft, Peter; Chatterjee, Nilanjan Pathway analysis by adaptive combination of P-values, Genetic Epidemiology, Volume 33 (2009) no. 8, pp. 700-709 | Article

[37] Zienolddiny, S.; Haugen, A.; Lie, J.AS.; Kjuus, H.; K.H., Anmarkrud; Kjærheim, K. Analysis of polymorphisms in the circadian-related genes and breast cancer risk in Norwegian nurses working night shifts, Breast Cancer Research, Volume 15 (2013) | Article