Archimedean Copulas in High Dimensions: Estimators and Numerical Challenges Motivated by Financial Applications
[Implémentations stables et estimateurs de copules Archimédiennes en grandes dimensions pour les applications financières]
Journal de la société française de statistique, Tome 154 (2013) no. 1, pp. 25-63.

Les pratiques du moment en gestion quantitative du risque nous amènent à étudier des modèles de dépendance en grandes dimensions construits à partir de copules Archimédiennes. La performance d’un grand nombre d’estimateurs, dont plusieurs sont originaux, est étudiée et des solutions sont proposées pour les problèmes numériques associés. Des estimateurs fondés sur le méthode des moments et le beta de Blomqvist ainsi que le tau de Kendall sont comparés à des estimateurs du minimum de distance, du maximum de vraisemblance, du maximum de vraisemblance simulé et du maximum de vraisemblance fondé sur la diagonale de la copule. Des simulations sont réalisées dans le cas où les marges sont connues et dans le cas où elles sont estimées non paramétriquement, en faibles et en grandes dimensions, pour plusieurs familles de copules Archimédiennes. Toutes les méthodes étudiées sont implantées dans le package R copula distribué sous une licence libre. Les solutions numériques présentées dans ce travail restent valident dans le cas de généralisations asymétriques des copules Archimédiennes et d’importantes quantités associées comme la fonction de distribution de Kendall.

The study of Archimedean dependence models in high dimensions is motivated by current practice in quantitative risk management. The performance of known and new parametric estimators for the parameters of Archimedean copulas is investigated and related numerical difficulties are addressed. In particular, method-of-moments-like estimators based on pairwise Kendall’s tau, a multivariate extension of Blomqvist’s beta, minimum distance estimators, the maximum-likelihood estimator, a simulated maximum-likelihood estimator, and a maximum-likelihood estimator based on the copula diagonal are studied. Their performance is compared in a large-scale simulation study both under known and unknown margins (pseudo-observations), in small and high dimensions, under small and large dependencies, and various different Archimedean families. High dimensions up to one hundred are considered and computational problems arising from such large dimensions are addressed in detail. All methods are implemented in the open source R package copula and can thus be easily accessed and studied. The numerical solutions developed in this work extend to various asymmetric generalizations of Archimedean copulas and important quantities such as distributions of radial parts or the Kendall distribution function.

Mots clés : Copules Archimédiennes, estimation paramétrique, tau de Kendall, beta de Blomqvist, estimateurs du minimum de distance, estimateurs du maximum de vraisemblance, gestion quantitative du risque
@article{JSFS_2013__154_1_25_0,
     author = {Hofert, Marius and M\"achler, Martin and McNeil, Alexander J.},
     title = {Archimedean {Copulas} in {High} {Dimensions:} {Estimators} and {Numerical} {Challenges} {Motivated} by {Financial} {Applications}},
     journal = {Journal de la soci\'et\'e fran\c{c}aise de statistique},
     pages = {25--63},
     publisher = {Soci\'et\'e fran\c{c}aise de statistique},
     volume = {154},
     number = {1},
     year = {2013},
     zbl = {1316.62070},
     mrnumber = {3089615},
     language = {en},
     url = {http://www.numdam.org/item/JSFS_2013__154_1_25_0/}
}
TY  - JOUR
AU  - Hofert, Marius
AU  - Mächler, Martin
AU  - McNeil, Alexander J.
TI  - Archimedean Copulas in High Dimensions: Estimators and Numerical Challenges Motivated by Financial Applications
JO  - Journal de la société française de statistique
PY  - 2013
DA  - 2013///
SP  - 25
EP  - 63
VL  - 154
IS  - 1
PB  - Société française de statistique
UR  - http://www.numdam.org/item/JSFS_2013__154_1_25_0/
UR  - https://zbmath.org/?q=an%3A1316.62070
UR  - https://www.ams.org/mathscinet-getitem?mr=3089615
LA  - en
ID  - JSFS_2013__154_1_25_0
ER  - 
Hofert, Marius; Mächler, Martin; McNeil, Alexander J. Archimedean Copulas in High Dimensions: Estimators and Numerical Challenges Motivated by Financial Applications. Journal de la société française de statistique, Tome 154 (2013) no. 1, pp. 25-63. http://www.numdam.org/item/JSFS_2013__154_1_25_0/

[1] Berg, D.; Aas, K. Models for construction of multivariate dependence – A comparison study, The European Journal of Finance, Volume 15 (2009) no. 7, pp. 639-659

[2] Berg, D. Copula goodness-of-fit testing: an overview and power comparison, The European Journal of Finance, Volume 15 (2009) no. 7-8, pp. 675-701 | Article

[3] Barbe, P.; Genest, Christian; Ghoudi, K.; Rémillard, B. On Kendall’s Process, Journal of Multivariate Analysis, Volume 58 (1996), pp. 197-229 | MR 1405589 | Zbl 0862.60020

[4] Brahimi, B.; Necir, A. A semiparametric estimation of copula models based on the method of moments (2011) | arXiv:1105.6077 | MR 2897802

[5] Chavez-Demoulin, Valérie; Embrechts, Paul; Hofert, Marius An extreme value approach for modeling operational risk losses depending on covariates (2013)

[6] Charpentier, A.; Fermanian, J.-D.; Scaillet, O. The Estimation of Copulas: Theory and Practice, Copulas: From Theory to Applications in Finance (Rank, J., ed.), Risk Books, 2007, pp. 35-62

[7] Donnelly, C.; Embrechts, P. The devil is in the tails: actuarial mathematics and the subprime mortgage crisis, ASTIN Bulletin, Volume 40 (2010) no. 1, pp. 1-33 | MR 2758249 | Zbl 1230.91181

[8] Duchateau, L.; Janssen, P. The Frailty Model, Springer, 2008 | MR 2723929 | Zbl 1210.62153

[9] Dimitrova, D. S.; Kaishev, V. K.; Penev, S. I. GeD spline estimation of multivariate Archimedean copulas, Computational Statistics & Data Analysis, Volume 52 (2008), pp. 3570-3582 | MR 2427366 | Zbl 05564723

[10] D’Agostino, R. B.; Stephens, M. A. Goodness-of-fit techniques, Dekker, 1986 | MR 874534 | Zbl 0597.62030

[11] Embrechts, Paul; Hofert, Marius Comments on: Inference in multivariate Archimedean copula models, TEST, Volume 20 (2011) no. 2, pp. 263-270 | Article | MR 2834041 | Zbl 1367.62163

[12] Feller, W. An Introduction to Probability Theory and Its Applications, 2, Wiley, 1971 | MR 270403 | Zbl 0219.60003

[13] Flajolet, P.; Sedgewick, R. Mellin transforms and asymptotics: Finite differences and Rice’s integrals, Theoretical Computer Science, Volume 144 (1995), pp. 101-124 | MR 1337755 | Zbl 0869.68056

[14] Genest, Christian; Ghoudi, K.; Rivest, L.-P. A semiparametric estimation procedure of dependence parameters in multivariate families of distributions, Biometrika, Volume 82 (1995) no. 3, pp. 543-552 | MR 1366280 | Zbl 0831.62030

[15] Genest, Christian; Nešlehová, Johanna; Ziegel, Johanna Inference in multivariate Archimedean copula models, TEST (2011) (in press) | MR 2834039 | Zbl 1274.62399

[16] Genest, Christian; Rivest, L.-P. Statistical Inference Procedures for Bivariate Archimedean Copulas, Journal of the American Statistical Association, Volume 88 (1993) no. 423, pp. 1034-1043 | MR 1242947 | Zbl 0785.62032

[17] Genest, Christian; Rémillard, B.; Beaudoin, D. Goodness-of-fit tests for copulas: A review and a power study, Insurance: Mathematics and Economics, Volume 44 (2009), pp. 199-213 | MR 2517885 | Zbl 1161.91416

[18] Griewank, Andreas; Walther, Andrea Introduction to Automatic Differentiation, Proceedings of GAMM 2002, Volume 2 (2003) no. 1, pp. 45-49 | Zbl 1201.68160

[19] Hering, C. Estimation Techniques and Goodness-of-fit Tests for Certain Copula Classes in Large Dimensions (2011) (Ph. D. Thesis)

[20] Hering, Christian; Hofert, Marius Goodness-of-fit tests for Archimedean copulas in large dimensions (2013)

[21] Hofert, Marius; Mächler, Martin Nested Archimedean Copulas Meet R: The nacopula Package, Journal of Statistical Software, Volume 39 (2011) no. 9, pp. 1-20 http://www.jstatsoft.org/v39/i09/

[22] Hofert, Marius; Mächler, Martin; McNeil, Alexander J. Likelihood inference for Archimedean copulas in high dimensions under known margins, Journal of Multivariate Analysis, Volume 110 (2012), pp. 133-150 | Article | MR 2927514 | Zbl 1244.62073

[23] Hofert, Marius Sampling Nested Archimedean Copulas with Applications to CDO Pricing, Südwestdeutscher Verlag für Hochschulschriften AG & Co. KG, 2010 (PhD thesis)

[24] Hofert, Marius A stochastic representation and sampling algorithm for nested Archimedean copulas, Journal of Statistical Computation and Simulation, Volume 82 (2012) no. 9, pp. 1239-1255 | Article | MR 2968488 | Zbl 1271.60026

[25] Hougaard, Philip Analysis of Multivariate Survival Data, Springer, 2000 | MR 1777022 | Zbl 0962.62096

[26] Hofert, Marius; Pham, David Densities of nested Archimedean copulas, Journal of Multivariate Analysis (2013) | Article | MR 3054089 | Zbl 1277.62138

[27] Hofert, Marius; Scherer, Matthias CDO pricing with nested Archimedean copulas, Quantitative Finance, Volume 11 (2011) no. 5, pp. 775-787 | Article | MR 2800641 | Zbl 1213.91074

[28] Hofert, Marius; Vrins, Frédéric Sibuya copulas, Journal of Multivariate Analysis, Volume 114 (2013), pp. 318-337 | Article | MR 2993889 | Zbl 1354.60014

[29] Joe, H. Multivariate Models and Dependence Concepts, Chapman & Hall/CRC, 1997 | MR 1462613 | Zbl 0990.62517

[30] Kojadinovic, Ivan; Yan, Jun Modeling Multivariate Distributions with Continuous Margins Using the copula R Package, Journal of Statistical Software, Volume 34 (2010) no. 9, pp. 1-20

[31] Lambert, P. Archimedean copula estimation using Bayesian splines smoothing techniques, Computational Statistics & Data Analysis, Volume 51 (2007), pp. 6307-6320 | MR 2408596 | Zbl 1445.62105

[32] McNeil, A. J.; Frey, R.; Embrechts, P. Quantitative Risk Management: Concepts, Techniques, Tools, Princeton University Press, 2005 | MR 2175089 | Zbl 1089.91037

[33] McNeil, A. J.; Nešlehová, Johanna Multivariate Archimedean copulas, d -monotone functions and l 1 -norm symmetric distributions, The Annals of Statistics, Volume 37 (2009) no. 5b, pp. 3059-3097 | MR 2541455 | Zbl 1173.62044

[34] Mächler, Martin Numerically Stable Frank Copula Functions via Multiprecision: R Package ‘Rmpfr’, 2011 http://cran.r-project.org/web/packages/copula/vignettes/Frank-Rmpfr.pdf

[35] Mächler, Martin Accurately Computing log ( 1 - exp ( - | a | ) ) , 2012 http://cran.r-project.org/web/packages/Rmpfr/vignettes/log1mexp-note.pdf

[36] Nelsen, R. B. An Introduction to Copulas, Springer, 2006 | MR 2197664 | Zbl 1152.62030

[37] Qu, X.; Zhou, J.; Shen, X. Archimedean copula estimation and model selection via l 1 -norm symmetric distribution, Insurance: Mathematics and Economics, Volume 46 (2010), pp. 406-414 | MR 2656342 | Zbl 1231.91489

[38] Scarsini, M. On measures of concordance, Stochastica, Volume 8 (1984) no. 3, pp. 201-218 | MR 796650 | Zbl 0582.62047

[39] Sibuya, M. Bivariate extreme statistics, I, Annals of the Institute of Statistical Mathematics, Volume 11 (1959) no. 2, pp. 195-210 | MR 115241 | Zbl 0095.33703

[40] Schönbucher, P. J.; Schubert, D. Copula-Dependent Default Risk in Intensity Models (2001) http://papers.ssrn.com/sol3/papers.cfm?abstract_id=301968

[41] Schmid, F.; Schmidt, R. Nonparametric inference on multivariate versions of Blomqvist’s beta and related measures of tail dependence, Metrika, Volume 66 (2007), pp. 323-354 | MR 2336484 | Zbl 1433.62151

[42] Savu, C.; Trede, M. Hierarchies of Archimedean copulas, Quantitative Finance, Volume 10 (2010) no. 3, pp. 295-304 | MR 2754450 | Zbl 1270.91086

[43] Stephenson, A. G. High-dimensional parametric modelling of multivariate extreme events, Australian & New Zealand Journal of Statistics, Volume 51 (2009) no. 1, pp. 77-88 | MR 2504104 | Zbl 1336.62134

[44] Tsukahara, H. Semiparametric estimation in copula models, The Canadian Journal of Statistics, Volume 33 (2005) no. 3, pp. 357-375 | MR 2193980 | Zbl 1077.62022

[45] Weiß, G. N. F. Copula parameter estimation: numerical considerations and implications for risk management, The Journal of Risk, Volume 13 (2010) no. 1, pp. 17-53