During the last decades, copulas have been increasingly used to model the dependence across several random variables such as the joint modelling of the intensity and the duration of rainfall storms. When the problem consists in modelling extreme values, i.e., only the tails of the distribution, the extreme value theory tells us that one should consider max-stable distributions and put some restrictions on the copulas to be used. Although the theory for multivariate extremes is well established, its foundation is usually introduced outside the copula framework. This paper tries to unify these two frameworks in a single view. Moreover the latest developments on spatial extremes and max-stable processes will be introduced. At first glance the use of copulas for spatial problems sounds a bit odd but since usually stochastic processes are observed at a finite number of locations, the inferential procedure is intrinsically multivariate. An application on the spatial modelling of extreme temperatures in Switzerland is given. Results show that the use of non extreme value based models can largely underestimate the spatial dependence and the assumptions made on the spatial dependence structure should be chosen with care.
Les dernières décennies ont vu une utilisation des copules de plus en plus fréquente afin de modéliser la dépendance présente au sein d’un groupe de plusieurs variables aléatoires ; par exemple afin de modéliser simultanément l’intensité et la durée d’un événement pluvieux. Lorsque l’intérêt porte sur la modélisation des valeurs extrêmes, i.e., seulement les queues de la distribution, la théorie des valeurs extrêmes nous dicte quelles distributions considérer. Ces dernières doivent être max-stables et imposent donc des contraintes sur les copules adéquates. Bien que la théorie pour les extrêmes multivariées soit bien établie, elle est généralement introduite en dehors du cadre des copules. Ce papier essaye de présenter la théorie des valeurs extrêmes par le monde des copules. Les derniers développements sur les extrêmes spatiaux et les processus max-stables seront également évoqués. Bien qu’il paraisse étrange au premier abord de parler de copules pour les processus stochastiques, leur utilisation peut être adéquate puisque les processus sont souvent observés en un nombre fini de positions et la procédure d’estimation est alors intrinsèquement multivariée. Une application à la modélisation spatiale des températures extrêmes en Suisse est donnée. Les résultats montrent que l’utilisation de modèles non extrêmes peut largement sous-estimer la dépendance spatiale et que le choix fait sur la structure de dépendance spatiale est primordial.
Mot clés : Processus max-stable, Copule des valeurs extrêmes, Précipitation
@article{JSFS_2013__154_1_138_0, author = {Ribatet, Mathieu and Sedki, Mohammed}, title = {Extreme value copulas and max-stable processes}, journal = {Journal de la soci\'et\'e fran\c{c}aise de statistique}, pages = {138--150}, publisher = {Soci\'et\'e fran\c{c}aise de statistique}, volume = {154}, number = {1}, year = {2013}, zbl = {1316.60080}, language = {en}, url = {http://www.numdam.org/item/JSFS_2013__154_1_138_0/} }
TY - JOUR AU - Ribatet, Mathieu AU - Sedki, Mohammed TI - Extreme value copulas and max-stable processes JO - Journal de la société française de statistique PY - 2013 SP - 138 EP - 150 VL - 154 IS - 1 PB - Société française de statistique UR - http://www.numdam.org/item/JSFS_2013__154_1_138_0/ LA - en ID - JSFS_2013__154_1_138_0 ER -
%0 Journal Article %A Ribatet, Mathieu %A Sedki, Mohammed %T Extreme value copulas and max-stable processes %J Journal de la société française de statistique %D 2013 %P 138-150 %V 154 %N 1 %I Société française de statistique %U http://www.numdam.org/item/JSFS_2013__154_1_138_0/ %G en %F JSFS_2013__154_1_138_0
Ribatet, Mathieu; Sedki, Mohammed. Extreme value copulas and max-stable processes. Journal de la société française de statistique, Volume 154 (2013) no. 1, pp. 138-150. http://www.numdam.org/item/JSFS_2013__154_1_138_0/
[1] B. M. Brown and S. I. Resnick. Extreme values of independent stochastic processes. J. Appl. Prob., 14:732–739, 1977. | Zbl
[2] P. Capéraà, A.-L. Fougères, and C. Genest. A nonparametric estimation procedure for bivariate extreme value copulas. Biometrika, 84(3):567–577, 1997. | Zbl
[3] Dan Cooley, Philippe Naveau, and Paul Poncet. Variograms for spatial max-stable random fields. In Dependence in Probability and Statistics, volume 187 of Lecture Notes in Statistics, pages 373–390. Springer, New York, 2006. | Zbl
[4] A. C. Davison and M. M. Gholamrezaee. Geostatistics of extremes. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 10 2011.
[5] A.C. Davison, S.A. Padoan, and M. Ribatet. Statistical modelling of spatial extremes. Statistical Science, 7(2):161–186, 2012.
[6] L. de Haan. A spectral representation for max-stable processes. The Annals of Probability, 12(4):1194–1204, 1984. | Zbl
[7] L. de Haan and S. Resnick. Limit theory for multivariate sample extremes. Z. Wahrscheinlichkeitstheorie verw. Gebiete, 40:317–337, 1977. | Zbl
[8] Laurens de Haan and Ana Fereira. Extreme value theory: An introduction. Springer Series in Operations Research and Financial Engineering, 2006. | Zbl
[9] S. Demarta and A.J. McNeil. The copula and related copulas. International Statistical Review, 73(1):111–129, 2005. | Zbl
[10] C. Dombry, F. Éyi-Minko, and M. Ribatet. Conditional simulation of max-stable processes. To appear in Biometrika, 2012.
[11] P. Embrechts, F. Lindskog, and A. McNeil. Modelling dependence with copulas and applications to risk management. Elsevier, 2003.
[12] J. Galambos. Order statistics of samples from multivariate distributions. Journal of the American Statistical Association, 9:674–680, 1975. | Zbl
[13] J. Galambos. The Asymptotic Theory of Extreme Order Statistics. Krieger Malabar, 1987. | Zbl
[14] C. Genest, M. Gendron, and M. Bourdeau-Brien. The advent of copulas in finance. The European Journal of Finance, 15:609–618, 2009.
[15] C. Genest and L.P. Rivest. A characterization of Gumbel’s family of extreme value distributions. Statist. Probab. Lett., 8:207–211, 1989. | Zbl
[16] G. Gudendorf and J. Segers. Nonparametric estimation of an extreme value copula in arbitrary dimensions. Journal of multivariate analysis, 102:37–47, 2011.
[17] E.J. Gumbel. Bivariate exponential distributions. Journal of the American Statistical Association, 55(292):698–707, 1960. | Zbl
[18] Joerg Husler and Rolf-Dieter Reiss. Maxima of normal random vectors: Between independence and complete dependence. Statistics & Probability Letters, 7(4):283–286, February 1989. | Zbl
[19] H. Joe. Families of min-stable multivariate exponential and multivariate extreme value distributions. Statist. Probab. Lett., 9:75–82, 1990. | Zbl
[20] H. Joe. Multivariate models and dependence concepts. Chapman & Hall, London, 1997. | Zbl
[21] Z. Kabluchko, M. Schlather, and L. de Haan. Stationary max-stable fields associated to negative definite functions. Ann. Prob., 37(5):2042–2065, 2009. | Zbl
[22] T. Mikosch. Copulas: Tales and facts. Extremes, 9(1):3–20, 2006. | Zbl
[23] R. Nelsen. An Introduction to Copula. Springer Series in Statistics, New York, 2nd edition, 2006. | Zbl
[24] A.K. Nikoloulopoulos, H. Joe, and H. Li. Extreme values properties of multivariate copulas. Extremes, 12:129–148, 2009. | Zbl
[25] T. Opitz. A spectral construction of the extremal- process. Submitted, 2012.
[26] S.A. Padoan, M. Ribatet, and S. Sisson. Likelihood-based inference for max-stable processes. Journal of the American Statistical Association (Theory & Methods), 105(489):263–277, 2010.
[27] M. D. Penrose. Semi-min-stable processes. Annals of Probability, 20(3):1450–1463, 1992. | Zbl
[28] M. Schlather and J.A. Tawn. A dependence measure for multivariate and spatial extremes: Properties and inference. Biometrika, 90(1):139–156, 2003. | Zbl
[29] Martin Schlather. Models for stationary max-stable random fields. Extremes, 5(1):33–44, March 2002. | Zbl
[30] R. L. Smith. Max-stable processes and spatial extreme. Unpublished manuscript, 1990.
[31] J.A. Tawn. Bivariate extreme value theory: Models and estimation. Biometrika, 75(3):397–415, 1988. | Zbl