A joint detection-estimation framework for analysing within-subject fMRI data
Journal de la société française de statistique, Volume 151 (2010) no. 1, pp. 58-89.

In this paper, we review classical and advanced methodologies for analysing within-subject functional Magnetic Resonance Imaging (fMRI) data. Such data are usually acquired during sensory or cognitive experiments that aims at stimulating the subject in the scanner and eliciting evoked brain activity. From such four-dimensional datasets (three in space, one in time), the goal is twofold: first, detecting brain regions involved in the sensory or cognitives processes that the experimental design manipulates; second, estimating the underlying activation dynamics. The first issue is usually addressed in the context of the General Linear Model (GLM), which a priori assumes a X form for the impulse response of the hemodynamic filter. The second question aims at estimating this shape which makes sense in activating regions only. In the last five years, a novel Joint Detection-Estimation (JDE) framework addressing these two questions simultaneously has been proposed in [ 59 , 60 , 102 ]. We show to which extent this methodology outperforms the GLM approach in terms of statistical sensitivity and specificity, which additional questions it allows us to investigate theoretically and how it provides us with a well-adapted framework to treat spatially unsmoothed real fMRI data both in the 3D acquisition volume and on the cortical surface.

Dans cet article, nous synthétisons la méthodologie usuelle et des variantes plus élaborées pour analyser des données individuelles d’Imagerie par Résonance Magnétique fonctionnelle (IRMf). De telles données sont acquises au cours d’expériences sensorielles ou cognitives dont le but est de stimuler le sujet dans le scanner afin d’évoquer une activité cérébrale typique. À partir de données quadri-dimensionnelles (trois dans l’espace et le temps), le but est double : d’abord, détecter les régions impliquées dans les processus sensoriels ou cognitifs que le protocole expérimental manipule ; ensuite, estimer la dynamique cérébrale sous-jacente. La première question est généralement abordée dans le contexte du Modèle Linéaire Général (MLG) qui suppose a priori connue la réponse impulsionnelle du filtre hémodynamique. La seconde question traite de l’estimation de la forme de cette réponse qui fait sens uniquement dans les régions activées. Durant ces cinq dernières années, un nouveau cadre de détection-estimation conjointe traitant ces deux questions simultanément a été proposé successivement dans [ 59 , 60 , 102 ]. Nous montrons ici jusqu’à quel point cette méthodologie étend les approches à base de MLG, les améliore en termes de sensibilité et spécificité statistique, quelles questions supplémentaires ce cadre permet d’investiguer théoriquement et comment il fournit un moyen aux utilisateurs de traiter de façon adaptée leur données non-lissées spatialement, aussi bien dans le répère 3D de l’acquisition que sur la surface corticale.

Keywords: fMRI, neuroimaging, nonparametric hemodynamics, Bayesian inference, MCMC, model selection, Markov random fields, partition function, Potts fields
@article{JSFS_2010__151_1_58_0,
     author = {Ciuciu, Philippe and Vincent, Thomas and Risser, Laurent and Donnet, Sophie},
     title = {A joint detection-estimation framework for analysing within-subject {fMRI} data},
     journal = {Journal de la soci\'et\'e fran\c{c}aise de statistique},
     pages = {58--89},
     publisher = {Soci\'et\'e fran\c{c}aise de statistique},
     volume = {151},
     number = {1},
     year = {2010},
     zbl = {1316.62039},
     mrnumber = {2679310},
     language = {en},
     url = {http://www.numdam.org/item/JSFS_2010__151_1_58_0/}
}
TY  - JOUR
AU  - Ciuciu, Philippe
AU  - Vincent, Thomas
AU  - Risser, Laurent
AU  - Donnet, Sophie
TI  - A joint detection-estimation framework for analysing within-subject fMRI data
JO  - Journal de la société française de statistique
PY  - 2010
DA  - 2010///
SP  - 58
EP  - 89
VL  - 151
IS  - 1
PB  - Société française de statistique
UR  - http://www.numdam.org/item/JSFS_2010__151_1_58_0/
UR  - https://zbmath.org/?q=an%3A1316.62039
UR  - https://www.ams.org/mathscinet-getitem?mr=2679310
LA  - en
ID  - JSFS_2010__151_1_58_0
ER  - 
%0 Journal Article
%A Ciuciu, Philippe
%A Vincent, Thomas
%A Risser, Laurent
%A Donnet, Sophie
%T A joint detection-estimation framework for analysing within-subject fMRI data
%J Journal de la société française de statistique
%D 2010
%P 58-89
%V 151
%N 1
%I Société française de statistique
%G en
%F JSFS_2010__151_1_58_0
Ciuciu, Philippe; Vincent, Thomas; Risser, Laurent; Donnet, Sophie. A joint detection-estimation framework for analysing within-subject fMRI data. Journal de la société française de statistique, Volume 151 (2010) no. 1, pp. 58-89. http://www.numdam.org/item/JSFS_2010__151_1_58_0/

[1] Aguirre, G. K.; Zarahn, E.; D’Esposito, M. The variability of human BOLD hemodynamic responses, Neuroimage, Volume 7 (1998), 574 pages

[2] Beal, Matthew Variational algorithms for approximate Bayesian inference, University College of London, May (2003) (PhD thesis)

[3] Benali, G. Marrelecand P. Ciuciuand M. Pélégrini-Issacand H. Estimation of the Hemodynamic Response Function in Event-Related Functional MRI: Directed Acyclic Graphs for a General Bayesian Inference Framework, Proc. 18th IPMI (LNCS-2732) (2003), pp. 635-646

[4] Benali, P. Ciuciuand J.-B. Polineand G. Marrelecand J. Idierand Ch. Pallierand H. Unsupervised robust non-parametric estimation of the hemodynamic response function for any fMRI experiment, IEEE Trans. Med. Imag., Volume 22 (2003) no. 10, pp. 1235-1251

[5] Benali, G. Marrelecand P. Ciuciuand M. Pélégrini-Issacand H. Estimation of the Hemodynamic Response Function in Event-Related Functional MRI: Bayesian networks as a framework for efficient Bayesian modeling and inference, IEEE Trans. Med. Imag., Volume 23 (2004) no. 8, pp. 959-967

[6] Baraldi, P.; Manginelli, A.; Maieron, M.; Liberati, D.; Porro, A. An ARX model-based approach to trial by trial identification of fMRI-BOLD responses, Neuroimage, Volume 37 (2007), pp. 189-201

[7] Buxton, Richard B.; Uludag̃, Kãmil; Dubowitz, David J.; Liu, Thomas T. Modeling the hemodynamic response to brain activation, Neuroimage, Volume 23, Supplement 1 (2004), p. S220-S233

[8] Boykov, Yuri; Veksler, Olga; Zabih, Ramin Fast approximate energy minimization via graph cuts, IEEE Trans. Pattern Anal. Mach. Intell., Volume 23 (2001) no. 11, pp. 1222-1239

[9] Buxton, R. B.; Wong, E. C.; R., Frank. L. Dynamics of blood flow and oxygenation changes during Brain activation: the balloon model, Magn. Reson. Med., Volume 39 (1998), pp. 855-864

[10] Barbu, Adrian; Zhu, Song-Chun Generalizing Swendsen-Wang to sampling arbitrary posterior probabilities, IEEE Trans. Pattern Anal. Mach. Intell., Volume 27 (2005) no. 8, pp. 1239-1253

[11] Charbonnier, Pierre; Blanc-Féraud, Laure; Aubert, Gilles; Barlaud, Michel Deterministic edge-preserving regularization in computed imaging, IEEE Trans. Image Processing, Volume 6 (1997) no. 2, pp. 298-311

[12] C. Clouchouxand O. Coulonand Anton, J.-Land; Régis, J.-F. Manginand J. A new cortical surface parcellation model and its automatic implementation, Proc. 9th MICCAI (LNCS 4191) (2006), pp. 193-200

[13] Chib, Siddharta Marginal likelihood from the Gibbs output, J. Amer. Statist. Assoc., Volume 90 (1995), pp. 1313-1321 | MR | Zbl

[14] Ciuciu, L. Risserand J. Idierand P. Bilinear extrapolation scheme For Fast Estimation of 3D Ising Field Partition Function. Application to fMRI Time Course Analysis., 16th Proc. IEEE ICIP (2009), pp. 833-836

[15] Ciuciu, L. Risserand T. Vincentand P. Schéma d’extrapolation de fonctions de partition de champs de Potts. Application à l’analyse d’images en IRMf, Actes du 22 e colloque GRETSI (2009)

[16] Ciuciu, T. Vincentand L. Risserand P. Spatially adaptive mixture modeling for analysis of within-subject fMRI time series, IEEE Trans. Med. Imag., Volume 29 (2010) no. 4, pp. 1059-1074

[17] Chib, Siddharta; Jeliazkov, Ivan Marginal likelihood from the Metropolis-Hastings output, J. Amer. Statist. Assoc., Volume 96 (2001) no. 453, pp. 270-281 | MR | Zbl

[18] Cohen, Mark S. Parametric analysis of XMRI data using linear systems methods, Neuroimage, Volume 6 (1997), pp. 93-103

[19] Casanova, Ramon; Ryali, Srikanth; Serences, John; Yang, Lucie; Kraft, Robert; Laurienti, Paul J; Maldjian, Joseph A The impact of temporal regularization on estimates of the BOLD hemodynamic response function: a comparative analysis., Neuroimage, Volume 40 (2008) no. 4, pp. 1606-1618 | DOI

[20] Duann, JR; Jung, TP; Kuo, WJ; Yeh, TC; Makeig, S; JC, Hsieh; TJ, Sejnowski Single-trial variability in event-related BOLD signals, Neuroimage, Volume 15 (2002) no. 4, p. 823-35

[21] Descombes, X.; Kruggel, F.; von Cramon, D. Y. Spatio-Temporal fMRI Analysis Using Markov Random Fields, IEEE Trans. Med. Imag., Volume 17 (1998) no. 6, pp. 1028-1039

[22] Donnet, P. Ciuciuand S. Bayesian model comparison and selection in neuroimaging from JDE results (2010) (Research Rep.)

[23] Everitt, B. S.; Bullmore, E. T. Mixture model mapping of brain activation in functional magnetic resonance images, Hum. Brain Mapp., Volume 7 (1999), pp. 1-14

[24] Fernández, Sylvia; Green, Peter J. Modelling spatially correlated data via mixtures: a Bayesian approach, J. R. Statist. Soc. B, Volume 64 (2002) no. 4, pp. 805-826 | MR | Zbl

[25] Friston, KJ; Harrison, L; Penny, W Dynamic causal modelling., Neuroimage, Volume 19 (2003) no. 4, p. 1273-302

[26] Friston, K.J.; Mattout, J.; Trullijo-Barreto, N.; Ashburner, J.; Penny, W. Variational free energy and the Laplace approximation, Neuroimage, Volume 33 (2007), pp. 220-234

[27] Friston, K. J.; Mechelli, A.; Turner, R.; Price, C. J. Nonlinear responses in fMRI: the balloon model, Volterra kernels, and other hemodynamics, Neuroimage, Volume 12 (2000), pp. 466-477

[28] Forbes, F.; Peyrard, N. Hidden Markov Random Field Model Selection Criteria Based on Mean Field-Like Approximations, IEEE Trans. Pattern Anal. Mach. Intell., Volume 25 (2003) no. 9, pp. 1089-1101

[29] Friston, K.J. Statistical Parametric Mapping, Functional Neuroimaging : Technical Foundations (1994), pp. 79-93

[30] Gössl, C.; Auer, D. P.; Fahrmeir, L. Bayesian spatio-temporal modeling of the hemodynamic response function in BOLD fMRI, Biometrics, Volume 57 (2001), pp. 554-562 | MR | Zbl

[31] Gelfand, A. E.; Dey, D. Bayesian model choice: asymptotic and exact calculations, J. R. Statist. Soc. B, Volume 56 (1994), pp. 501-514 | MR | Zbl

[32] Genovese, C.R. A Bayesian time-course model for functional magnetic resonance imaging data (with discussion), J. Amer. Statist. Assoc., Volume 95 (2000), pp. 691-719

[33] G. Flandinand Penny, W. D. Bayesian fMRI data analysis with sparse spatial basis function priors, Neuroimage, Volume 34 (2007) no. 3, pp. 1108-1125

[34] Geman, Stuart; Geman, Donald Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Trans. Pattern Anal. Mach. Intell., Volume PAMI-6 (1984) no. 6, pp. 721-741 | Zbl

[35] Gruber, O.; Indefrey, P.; Steinmetz, H.; Kleinschmidt, A. Dissociating Neural Correlates of Cognitive Components in Mental Calculation, Cereb. Cortex, Volume 11 (2001) no. 4, pp. 350-359 | DOI

[36] Glover, G. H. Deconvolution of impulse response in event-related BOLD fMRI, Neuroimage, Volume 9 (1999), pp. 416-429

[37] Gelman, A.; Meng, X.-L. Simulating normalizing constants: from importance sampling to bridge sampling to path sampling, Statistical Science, Volume 13 (1998), pp. 163-185 | MR | Zbl

[38] Goutte, C.; Nielsen, F. A.; Hansen, L. K. Modeling the haemodynamic response in fXMRI using smooth filters, IEEE Trans. Med. Imag., Volume 19 (2000) no. 12, pp. 1188-1201

[39] Green, P J.; Richardson, S. Hidden Markov models and desease mapping, J. Amer. Statist. Assoc., Volume 97 (2002) no. 460, pp. 1-16 | MR | Zbl

[40] Geman, Donald; Reynolds, Georges Constrained Restoration and the Recovery of Discontinuities, IEEE Trans. Pattern Anal. Mach. Intell., Volume 14 (1992) no. 3, pp. 367-383

[41] Green, Peter J. Reversible jump MCMC computation and Bayesian model determination, Biometrika, Volume 82 (1995), pp. 711-732 | MR | Zbl

[42] Gilks, W.R.; Richardson, S.; Spiegelhalter, D.J. Markov Chain Monte Carlo in practice, Chapman and Hall, London, United Kingdom, 1996 | MR | Zbl

[43] Geman, Donald; Yang, Chengda Nonlinear Image Recovery with Half-Quadratic Regularization, IEEE Trans. Image Processing, Volume 4 (1995) no. 7, pp. 932-946

[44] Holmes, A.P.; Ford, I. A Bayesian approach to significance testing for statistical images from PET, Quantification of Brain Function, Tracer Kinematics in Image Analysis in Brain PET (Excerpta Medica International Congress Series (1030)) (1993), pp. 521-531

[45] Higdon, D. M. Auxiliary variable methods for Markov chain Monte Carlo with applications, J. Amer. Statist. Assoc., Volume 93 (1998) no. 442, pp. 585-595 | Zbl

[46] Handwerker, Daniel A.; Ollinger, John M.; D’Esposito, Mark Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses, Neuroimage, Volume 21 (2004), pp. 1639-1651

[47] Harrison, L. M.; Penny, W.; Daunizeau, J.; Friston, K. J. Diffusion-based spatial priors for functional magnetic resonance images., Neuroimage, Volume 41 (2008) no. 2, pp. 408-423 | DOI

[48] Henson, R.; Price, C.; Rugg, M.; Turner, R.; Friston, K. Detecting latency differences in event-related BOLD responses: application to words versus nonwords and initial versus repeated face presentations, Neuroimage, Volume 15 (2002) no. 1, pp. 83-97

[49] Henson, R.; Rugg, M.; Friston, K. The choice of basis function in event-related fMRI, Volume 13 (2001), 149 pages

[50] Idier, P. Ciuciuand J. A Half-Quadratic block-coordinate descent method for spectral estimation, Signal Processing, Volume 82 (2002) no. 7, pp. 941-959 | Zbl

[51] Idier, J. Bayesian approach to Inverse problems, ISTE Ltd and John Wiley & Sons Inc, 2008 | MR | Zbl

[52] Idier, L. Risserand T. Vincentand P. Ciuciuand J. Robust extrapolation scheme for fast estimation of 3D Ising field partition functions. Application to within-subject fMRI data analysis., 12thProc. MICCAI’09 (LNCS 5761) (2009), pp. 975-983

[53] Idier, T. Vincentand L. Risserand P. Ciuciuand J. Spatially unsupervised analysis of within-subject fMRI data using multiple extrapolations of 3D Ising field partition functions, 2009 IEEE international workshop on Machine Learning for Signal Processing (2009)

[54] Johnston, Leigh A.; Duff, Eugene; Mareels, Iven; Egan, Gary F. Nonlinear estimation of the BOLD signal, Magn. Reson. Med., Volume 40 (2008) no. 2, pp. 504-514

[55] Jeng, F. C.; Woods, J. W. Compound Gauss-Markov random fields for image estimation, IEEE Trans. Signal Processing, Volume 39 (1991) no. 3, pp. 683-697

[56] Kiebel, S.J; Phillips, J. Daunizeau C.; Friston, K.J. Variational Bayesian inversion of the equivalent current dipole model in EEG/MEG, Neuroimage, Volume 39 (2008), pp. 728-741

[57] Kass, R. E.; Raftery, Adrian E. Bayes factors, J. Amer. Statist. Assoc., Volume 90 (1995), pp. 773-795 | MR | Zbl

[58] Kruggel, F.; Von Crammon, D. Y. Modeling the hemodynamic response in single-trial functional MRI experiments, Magn. Reson. Med., Volume 42 (1999), pp. 787-797

[59] Lange, N. Empirical and Substantive Models, the Bayesian Paradigm, and Meta-Analysis in Functional Brain Imaging, Hum. Brain Mapp., Volume 5 (1997), pp. 259-263

[60] Liu, J.S. Monte Carlo strategies in scientific computing, Springer series in Statistics, Springer-Verlag, New-York, 2001 | MR

[61] Risser, Laurent; Vincent, Thomas; Forbes, Florence; Idier, Jérôme; Ciuciu, Philippe Min-max extrapolation scheme for fast estimation of 3D Potts field partition functions. Application to the joint detection-estimation of brain activity in fMRI., Journal of Signal Processing Systems, Volume 65 (2010), pp. 325-338 | DOI

[62] Makni, Salima; Beckmann, Christian; Smith, Steve; Woolrich, Mark Bayesian deconvolution fMRI data using bilinear dynamical systems, Neuroimage, Volume 42 (2008) no. 4, pp. 1381-1396 | DOI

[63] Marreiros, André C; Kiebel, Stefan J; Friston, Karl J A dynamic causal model study of neuronal population dynamics, Neuroimage, Volume 51 (2010) no. 1, pp. 91-101

[64] Miezin, F. M.; Maccotta, L.; Ollinger, J. M.; Petersen, S. E.; Buckner, R. L. Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing, Neuroimage, Volume 11 (2000), pp. 735-759

[65] Meng, X.L.; Wong, W.H. Simulating ratios of normalizing constants via a simple identity: a theoretical exploration, Statistica Sinica, Volume 6 (1996), pp. 831-860 | Zbl

[66] Nielsen, F. A.; Hansen, L. K.; Toft, P.; Goutte, C.; Lange, N.; Stroher, S. C.; Morch, N.; Svarer, C.; Savoy, R.; Rosen, B.; Rostrup, E.; Born, P. Comparison of two convolution models for fMRI time series, Neuroimage, Volume 5 (1997)

[67] Newton, M.A.; Raftery, E. Approximate Bayesian inference by the weighted likelihood bootstrap (with discussion), J. R. Statist. Soc. B, Volume 56 (1994), pp. 3-48 | Zbl

[68] Operto, G; Bulot, R.; Anton, J.-L.; Coulon, O. Anatomically informed convolution kernels for the projection of fMRI data on the cortical surface, Proc. 9th MICCAI (LNCS 4191) (2006), pp. 300-307

[69] Ou, Wanmei; Golland, Polina From Spatial Regularization to Anatomical Priors in fMRI Analysis, IPMI, Glenwood Springs, Colorado (2005)

[70] Ou, Wanmei; Golland, Polina Combining spatial priors and anatomical information for fMRI detection, Medical Image Analysis, Volume 14 (2010) no. 3, pp. 318-331

[71] Ogawa, S.; Lee, T.; Kay, A.; Tank, D. Brain Magnetic Resonance Imaging with contrast dependent on blood oxygenation, Proc. Natl. Acad. Sci. USA, Volume 87 (1990) no. 24, pp. 9868-9872

[72] Onsager, L. A two-dimensional model with an order-disorder transition, Phys. Rev., Volume 65 (1944) no. 3& 4, pp. 117-149 | Zbl

[73] P. Ciuciuand Sockeel, S.and T. Vincentand J. Idier Modelling the neurovascular habituation effect on fMRI time series, 34th Proc. IEEE ICASSP (2009), pp. 433-436

[74] P. Ciuciuand T. Vincentand Fouque, A.-L.; Roche, A. Improved fMRI group studies based on spatially varying non-parametric BOLD signal modeling, 5th Proc. IEEE ISBI (2008), pp. 1263-1266

[75] Penny, W.D.; Flandin, G.; Trujillo-Bareto, N. Bayesian Comparison of Spatially Regularised General Linear Models, Human Brain Mapping, Volume 28 (2007) no. 4, pp. 275-293 | DOI

[76] Penny, W.; Ghahramani, Z.; Friston, K. Bilinear dynamical systems, Philos Trans R Soc Lond B Biol Sci, Volume 360 (2005) no. 1457, pp. 983-993 | DOI

[77] Poline, G. Flandinand F. Kherifand X. Pennecand G. Malandainand N. Ayacheand J.-B. Improved detection sensitivity of functional MRI data using a brain parcellation technique, Proc. 5th MICCAI (LNCS 2488 (Part I)) (2002), pp. 467-474 | Zbl

[78] Poline, G. Marrelecand H. Benaliand P. Ciuciuand M. Pélégrini-Issacand J.-B. Robust Bayesian estimation of the hemodynamic response function in event-related BOLD MRI using basic physiological information, Hum. Brain Mapp., Volume 19 (2003) no. 1, pp. 1-17

[79] Poline, S. Makniand P. Ciuciuand J. Idierand J.-B. Joint detection-estimation of brain activity in functional MRI: a multichannel deconvolution solution, IEEE Trans. Signal Processing, Volume 53 (2005) no. 9, pp. 3488-3502 | Zbl

[80] Poline, B. Thirionand G. Flandinand P. Pineland A. Rocheand P. Ciuciuand J.-B. Dealing with the shortcomings of spatial normalization: Multi-subject parcellation of fMRI datasets, Hum. Brain Mapp., Volume 27 (2006) no. 8, pp. 678-693

[81] Poline, S. Donnetand M. Lavielleand J.-B. Are fMRI event-related response constant in time? A model selection answer., Neuroimage (2006), pp. 1169-1176

[82] Poline, A. Tucholka and B. Thirion and M. Perrot and P. Pinel and J.-F. Mangin and J.-B. Probabilistic anatomo-functional parcellation of the cortex: how many regions?, 11thProc. MICCAI, LNCS Springer Verlag (2008)

[83] Penny, Will D; Stephan, Klaas E; Daunizeau, Jean; Rosa, Maria J; Friston, Karl J; Schofield, Thomas M; Leff, Alex P Comparing families of dynamic causal models, PLoS Comput Biol, Volume 6 (2010) no. 3

[84] Penny, W. D.; Trujillo-Barreto, N.; Friston, K. J. Bayesian fMRI time series analysis with spatial priors, Neuroimage, Volume 23 (2005) no. 2, pp. 350-362

[85] Riera, J.J.; Bosch, J.; Yamashita, O.; Kawashima, R.; Sadato, N.; Okada, T.; Ozaki, T. fMRI activation maps based on the NN-ARx model, Neuroimage, Volume 23 (2004), pp. 680-697

[86] Risser, A.-L. Fouque and P. Ciuciu and L. Multivariate spatial Gaussian mixture modeling for statistical clustering of hemodynamic parameters in functional MRI, 34th Proc. IEEE ICASSP (2009), pp. 445-448

[87] Rajapakse, J. C.; Kruggel, F.; Maisog, J. M.; Von Cramon, D.Y. Modeling Hemodynamic Response for Analysis of Functional XMRI Time-Series, Hum. Brain Mapp., Volume 6 (1998), pp. 283-300

[88] Raftery, Adrian E.; Newton, Michael A.; Satagopan, Jaya M.; Krivitsky, Pavel N. Estimating the integrated likelihood via posterior simulation using the harmonic mean identity, Bayesian statistics 8 (2007), pp. 1-45 | Zbl

[89] Rajapakse, J. C.; Piyaratna, J. Bayesian approach to segmentation of statistical parametric maps, IEEE Trans. Biomed. Eng., Volume 48 (2001), pp. 1186-1194

[90] Rajapakse, Jagath C; Tan, Choong Leong; Zheng, Xuebin; Mukhopadhyay, Susanta; Yang, Kanyan Exploratory analysis of brain connectivity with ICA, IEEE Eng Med Biol Mag, Volume 25 (2006) no. 2, pp. 102-111

[91] Riera, J.J.; Watanabe, J.; Kazuki, I.; Naoki, M.; Aubert, E.; Ozaki, T.; Kawashima, R. A state-space model of the hemodynamic approach: nonlinear filtering of BOLD signal, Neuroimage, Volume 21 (2004), pp. 547-567

[92] Shmuel, Amir; Augath, Mark; Oeltermann, Axel; Logothetis, Nikos K Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1., Nat Neurosci, Volume 9 (2006) no. 4, pp. 569-577

[93] Stephan, Klaas E; Harrison, Lee M; Kiebel, Stefan J; David, Olivier; Penny, Will D; Friston, Karl J Dynamic causal models of neural system dynamics:current state and future extensions, J Biosci, Volume 32 (2007) no. 1, pp. 129-144

[94] Stephan, Klaas E; Harrison, Lee M; Penny, Will D; Friston, Karl J Biophysical models of fMRI responses, Curr Opin Neurobiol, Volume 14 (2004) no. 5, pp. 629-635 | DOI

[95] Snoussi, Hichem; Idier, J. Bayesian blind separation of generalized hyperbolic processes in noisy and underdeterminate mixtures, IEEE Trans. Signal Processing, Volume 54 (2006) no. 9, pp. 3257-3269 | Zbl

[96] Svensen, Markus; Kruggel, Frithjof; von Crammon, D.Y. Probabilistic modeling of single-trial fMRI data, IEEE Trans. Med. Imag., Volume 19 (2000), pp. 19-35

[97] S. Makniand J. Idierand T. Vincentand B. Thirionand Dehaene-Lambertz, G.and P. Ciuciu A fully Bayesian approach to the parcel-based detection-estimation of brain activity in fMRI, Neuroimage, Volume 41 (2008) no. 3, pp. 941-969 | DOI

[98] Smith, M.; Pütz, B.; Auer, D.; Fahrmeir, L. Assessing brain activity through spatial Bayesian variable selection, Neuroimage, Volume 20 (2003), pp. 802-815

[99] Stephan, K. E.; Penny, W. D.; Moran, R. J.; den Ouden, H. E M; Daunizeau, J.; Friston, K. J. Ten simple rules for dynamic causal modeling, Neuroimage, Volume 49 (2010) no. 4, pp. 3099-3109 | DOI

[100] Smith, D.; Smith, M. Estimation of Binary Markov Random Fields Using Markov Chain Monte Carlo, J. Comput. and Graph. Stats., Volume 15 (2006) no. 1, pp. 207-227

[101] Sotero, R.C.; Trullijo-Barreto, N.J. Modelling the role of excitatory and inhibitory neuronal activity in the generation of the BOLD signal, Neuroimage, Volume 35 (2007), pp. 149-165

[102] Sotero, R.C.; Trullijo-Barreto, N.J.; Jiménez, J.; Carbonell, F.; Rodrìguez-Rojas, R. Identification and comparison of stochastic metabolic/hemodynamic models (sMHM) for the generation of the BOLD signal, J. Comput. NeuroSci., Volume 26 (2009), pp. 251-269

[103] Vaever Hartvig, N.; Jensen, J. Spatial mixture modeling of fMRI data, Hum. Brain Mapp., Volume 11 (2000) no. 4, pp. 233-248

[104] Woolrich, M.; Behrens, T. Variational Bayes inference of spatial mixture models for segmentation, IEEE Trans. Med. Imag., Volume 25 (2006) no. 10, pp. 1380-1391

[105] Woolrich, M.; Behrens, T.; Beckmann, Ch.; Smith, S. Mixture models with adaptive spatial regularization for segmentation with an application to fMRI data, IEEE Trans. Med. Imag., Volume 24 (2005) no. 1, pp. 1-11

[106] Woolrich, M.; Jenkinson, M.; Brady, J.; Smith, S. Fully Bayesian spatio-temporal modelling of fMRI data, IEEE Trans. Med. Imag., Volume 23 (2004) no. 2, pp. 213-231

[107] Woolrich, M.; Jenkinson, M.; Brady, J. M.; Smith, S. Constrained linear basis set for HRF modelling using variational Bayes, Neuroimage, Volume 21 (2004) no. 4, pp. 1748-1761

[108] Worsley, K.J.; Liao, C.H.; Aston, J.; Petre, V.; Duncan, G.H.; Morales, F.; Evans, A.C. A general statistical analysis for fMRI data, Neuroimage, Volume 15 (2002) no. 1, pp. 1-15