Estimateurs à noyau itérés : synthèse bibliographique
Journal de la société française de statistique, Tome 140 (1999) no. 1, p. 41-67
@article{JSFS_1999__140_1_41_0,
     author = {Biau, G\'erard},
     title = {Estimateurs \`a noyau it\'er\'es : synth\`ese bibliographique},
     journal = {Journal de la soci\'et\'e fran\c caise de statistique},
     publisher = {Soci\'et\'e fran\c caise de statistique},
     volume = {140},
     number = {1},
     year = {1999},
     pages = {41-67},
     language = {fr},
     url = {http://http://www.numdam.org/item/JSFS_1999__140_1_41_0}
}
Biau, Gérard. Estimateurs à noyau itérés : synthèse bibliographique. Journal de la société française de statistique, Tome 140 (1999) no. 1, pp. 41-67. http://www.numdam.org/item/JSFS_1999__140_1_41_0/

[1] Akaike H. (1954). An approximation to the density function. Annals of the Institute of Statistical Mathematics, 6 : 127-132. | MR 67412 | Zbl 0058.12302

[2] Berlinet A. et Devroye L. (1989). Estimation d'une densité : un point sur la méthode du noyau. Statistique et Analyse des Données, 14 : 1-32.

[3] Berlinet A. et Devroye L. (1994). A comparison of kernel density estimates. Publications de l'Institut de Statistique de l'Université de Paris, 38 : 3-59. | MR 1743393 | Zbl 0804.62039

[4] Birgé L. et Massart P. (1997). From model selection to adaptative estimation. In Festschrift for LeCam, 55-87. New York : Springer-Verlag. | MR 1462939 | Zbl 0920.62042

[5] Bosq D. et Lecoutre J.P. (1987). Théorie de l'Estimation Fonctionnelle. Paris : Economica.

[6] Bowman A.W. (1984). An alternative method of cross-validation for the smoothing of density estimates. Biometrika, 71 : 353-360. | MR 767163

[7] Burman P. (1985). A data dependent approach to density estimation. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 69 : 609-628. | MR 791915 | Zbl 0586.62044

[8] Cao R., Cuevas A. et González-Manteiga W. (1994). A comparative study of several smoothing methods in density estimation. Computational Statistics and Data Analysis, 17 : 153-176. | Zbl 0937.62518

[9] Chiu S.T. (1991). Bandwith selection for kernel density estimation. The Annals of Statistics, 19 : 1883-1905. | MR 1135154 | Zbl 0749.62022

[10] Chiu S.T. (1992). An automatic bandwith selector for kernel density estimation. Biometrika, 79 : 771-782. | MR 1209477 | Zbl 0764.62034

[11] Chow Y.S., Geman S. et Wu L.D. (1983) Consistent cross-validated density estimation. The Annals of Statistics, 11 : 25-38. | MR 684860 | Zbl 0509.62033

[12] Deheuvels P. (1974). Conditions nécessaires et suffisantes de convergence ponctuelle presque sûre et uniforme presque sûre des estimateurs de la densité. Comptes Rendus Mathématiques de l'Académie des Sciences de Paris, 278 : 1217-1220. | MR 345296 | Zbl 0281.62041

[13] Deheuvels P. (1977). Estimation non paramétrique de la densité par histogrammes généralisés. Revue de Statistique Appliquée, 25 : 5-42. | MR 501555

[14] Deheuvels P. et Hominal P. (1980) Estimation automatique de la densité. Revue de Statistique Appliquée, 28 : 25-55. | Numdam | MR 575109 | Zbl 0503.62032

[15] Devroye L. (1987). A Course m Density Estimation. Boston : Birkhauser. | Zbl 0617.62043

[16] Devroye L. (1989). A universal lower bound for the kernel estimate. Statistics and Probability Letters, 8 : 419-423. | MR 1040802 | Zbl 0681.62042

[17] Devroye L. (1994). On good deterministic smoothing sequences for kernel density estimates. The Annals of Statistics, 22 : 886-889. | MR 1292545 | Zbl 0805.62039

[18] Devroye L. (1997). Universal smoothing factor selection in density estimation : theory and practice. Test, 6 : 223-320. | MR 1616896 | Zbl 0949.62026

[19] Devroye L. et Gyorfi L. (1985) Nonparametric Density Estimation the L1 View. New York : Wiley. | MR 780746

[20] Devroye L. et Lugosi G. (1996). A universally acceptable smoothing factor for kernel density estimates. The Annals of Statistics, 24 : 2499-2512. | MR 1425963 | Zbl 0867.62024

[21] Devroye L. et Lugosi G. (1997). Nonasymptotic universal smoothing factors, kernel complexity, and Yatracos classes. The Annals of Statistics, 25 : 2626-2637. | MR 1604428 | Zbl 0897.62035

[22] Duin R.P.W. (1976) On the choice of smoothing parameters for Parzen estimators of probability density functions. IEEE Transactions on Computers, 25 : 1175-1179. | Zbl 0359.93035

[23] Engel J., Herrmann E. et Gasser T. (1994) An iterative bandwith selector for kernel estimation of densities and their derivatives. Journal of Nonparametric Statistics, 4 : 21-34. | MR 1366361 | Zbl pre05143427

[24] Fan J. et Marron J.S. (1992). Best possible constant for bandwith selection. The Annals of Statistics, 20 : 2057-2070. | MR 1193325 | Zbl 0765.62041

[25] Gijbels I. et Mammen E. (1998). Local adaptivity of kernel estimates with plug-in local bandwith selectors. Board of the Foundation of the Scandmavian Journal of Statistics, 25 : 503-520. | MR 1650027 | Zbl 0921.62044

[26] Habbema J.D.F., Hermans J. et Vandenbroek K. (1974). A stepwise discriminant analysis program using density estimation. In Compstat, ed. G. Bruckmann, 101-110. Wien : Physica-Verlag. | MR 345251

[27] Hall P. (1982). Cross-validation in density estimation. Biometrika, 69 : 383-390. | MR 671976 | Zbl 0496.62038

[28] Hall P. (1983). Large-sample optimality of least squares cross-validation in density estimation. The Annals of Statistics, 11 : 1156-1174. | MR 720261 | Zbl 0599.62051

[29] Hall P. (1985). Asymptotic theory of minimum integrated square error for multivariate density estimation. In Multwariate Analysis VI, ed. Krishnaiah, 289-309. Amsterdam . North-Holland. | MR 822301 | Zbl 0592.62042

[30] Hall P. (1993). On plug-in rules for local smoothing of density estimators. The Annals of Statistics, 21 : 694-710. | MR 1232513 | Zbl 0779.62035

[31] Hall P. et Marron J.S. ( 1987a). Estimation of integrated squared density derivatives. Statistics and Probability Letters, 6 : 109-115. | MR 907270 | Zbl 0628.62029

[32] Hall P. et Marron J.S. ( 1987b). Extent to which least squares cross-validation minimises integrated square error in nonparametric density estimation. Probability Theory and Related Fields, 74 : 567-581. | MR 876256 | Zbl 0588.62052

[33] Hall P. et Marron J.S. ( 1987c). On the amount of noise inherent in bandwith selection of a kernel density estimator. The Annals of Statistics, 15 : 163-181. | MR 885730 | Zbl 0667.62022

[34] Hall P. et Marron J.S. ( 1991a). Local minima in cross-validation functions. Journal of the Royal Statistical Association, B53 : 245-252. | MR 1094284 | Zbl 0800.62216

[35] Hall P. et Marron J.S. ( 1991b). Lower bounds for bandwith selection in density estimation. Probability Theory and Related Fields, 90 : 149-173. | MR 1128068 | Zbl 0742.62041

[36] Hall P., Marron J.S. et Park B.U. (1992). Smoothed cross-validation. Probability Theory and Related Fields, 92 : 1-20. | MR 1156447 | Zbl 0742.62042

[37] Hall P., Sheather S.J., Jones M.C. et Marron J.S. (1991). On optimal data-based bandwith selection in kernel density estimation Biometrika, 78 : 263-269. | MR 1131158 | Zbl 0733.62045

[38] Hall P. et Wand M.P. (1988). Minimizing L1 distance in nonparametric density estimation. Journal of Multivariate Analysis, 26 : 59-88. | MR 955204 | Zbl 0673.62030

[39] Jones M. C., Marron J.S. et Park B.U. (1991). A simple root n bandwith selector. The Annals of Statistics, 19 : 1919-1932. | MR 1135156 | Zbl 0745.62033

[40] Jones M.C. et Sheather S. J. (1991). Using non-stochastic terms to advantage in kernel-based estimation of integrated squared density derivatives. Statistics and Probability Letters, 11 : 511-514. | MR 1116745 | Zbl 0724.62040

[41] Kim W.C., Park B.U. et Marron J.S. (1994). Asymptotically best bandwith selectors in kernel density estimation. Statistics and Probability Letters, 19 : 119-127. | MR 1256700 | Zbl 0787.62043

[42] Marron J.S. (1985). An asymptotically efficient solution to the bandwith problem of kernel density estimation. The Annals of Statistics, 13 : 1011-1023. | MR 803755 | Zbl 0585.62073

[43] Marron J.S. (1987). A comparison of cross-validation techniques in density estimation. The Annals of Statistics, 15 : 152-162. | MR 885729 | Zbl 0619.62032

[44] Marron J.S. (1988). Automatic smoothing parameter selection : a survey. Empirical Economics, 13 : 187-208.

[45] Marron J.S. (1989) Comments on a data-based bandwith selector. Computational Statistics and Data Analysis, 8 : 155-170. | MR 1016243 | Zbl 0726.62054

[46] Marron J.S. (1992). Bootstrap bandwith selection. In Exploring the Limits of Bootstrap, ed. R. le Page et L. Billard, 249-262. New York : Wiley. | MR 1197788 | Zbl 0838.62029

[47] Nadaray E.A. (1974). On the integral mean square error of some nonparametric estimates for the density function. Theory of Probability and its Applications, 19 : 133-141. | Zbl 0309.62025

[48] Park B.U. (1989). On the plug-in bandwith selectors in kernel density estimation. Journal of the Korean Statistical Society, 18 : 107-117. | MR 1045936

[49] Park B.U. et Marron J.S. (1990). Comparison of data-driven bandwith selectors. Journal of the American Statistical Association, 85 : 66-72.

[50] Park B.U. et Marron J.S. (1992). On the use of pilot estimators in bandwith selection. Journal of Nonparametric Statistics, 1 : 231-240. | MR 1241525 | Zbl pre05143354

[51] Parzen E. (1962). On the estimation of a probability density function and the mode. The Annals of Mathematical Statistics, 33 : 1065-1076. | MR 143282 | Zbl 0116.11302

[52] Rosenblatt M. (1956). Remarks on some nonparametric estimates of a density function. The Annals of Mathematical Statistics, 27 : 832-837. | MR 79873 | Zbl 0073.14602

[53] Rosenblatt M. (1971). Curve estimates. The Annals of Mathematical Statistics, 42 : 1815-1842. | MR 301851 | Zbl 0231.62100

[54] Rudemo M. (1982). Empirical choice of histograms and kernel density estimators. Scandinavian Journal of Statistics, 9 : 65-78. | MR 668683 | Zbl 0501.62028

[55] Schuster E.F. et Gregory G. G. (1981). On the nonconsistency of maximum likelihood nonparametric density estimators. In Computer Science and Statistics : Proceedings of the 13th Symposium on the Interface, ed. W.F. Eddy, 295-298. New York : Springer Verlag. | MR 650809

[56] Scott D.W. (1985). Averaged shifted histograms : effective nonparametric density estimators in several dimensions The Annals of Statistics, 13 : 1024-1040. | MR 803756 | Zbl 0589.62022

[57] Scott D.W. (1992). Multivariate Density Estimation : Theory, Practice, and Visualisation. New York : Wiley. | MR 1191168 | Zbl 0850.62006

[58] Scott D.W. et Factor L.E. (1981). Monte Carlo study of three data-based nonparametric probability density estimators. Journal of the American Statistical Association, 76 : 9-15. | Zbl 0465.62036

[59] Scott D.W., Tapia R.A. et Thompson J.R. (1977). Kernel density estimation revisited. Nonlinear Analysis, Theory, Methods and Applications, 1 : 339-372. | MR 518889 | Zbl 0363.62030

[60] Scott D.W. et Terrell G. R. (1987). Biased and unbiased cross-validation in density estimation. Journal of the American Statistical Association, 82 : 1131-1146. | MR 922178 | Zbl 0648.62037

[61] Sheather S.J. (1983). A data-based algorithm for choosing the window width when estimating the density at a point. Computational Statistics and Data Analysis, 1 : 229-238. | Zbl 0559.62033

[62] Sheather S.J. (1986). An improved data-based algorithm for choosing the window width when estimating the density at a point. Computational Statistics and Data Analysis, 4 : 61-65.

[63] Sheather S.J. et Jones M.C. (1991). A reliable data-based bandwith selection method for kernel density estimation. Journal of the Royal Statistical Society, B53 : 683-690. | MR 1125725 | Zbl 0800.62219

[64] Silverman B.W. (1986). Density Estimation for Statistics and Data Analysis. London : Chapman and Hall. | MR 848134 | Zbl 0617.62042

[65] Simonoff J.S. (1996). Smoothing Methods in Statistics. New York : Springer-Verlag. | MR 1391963 | Zbl 0859.62035

[66] Stone C.J. (1984) An asymptotically optimal window selection rule for kernel density estimates. The Annals of Statistics, 12 : 1285-1297. | MR 760688 | Zbl 0599.62052

[67] Terrell G.R. et Scott D.W. (1985). Oversmoothed nonparametric density estimates. Journal of the American Statistical Association, 80 : 209-214. | MR 786608

[68] Turlach B.A. (1993). Bandwith selection in kernel density estimation : a review. Rapport technique, Université Catholique de Louvain.

[69] Wegkamp M.H. (1999). Quasi-universal bandwith selection for kernel density estimators A paraître dans The Canadian Journal of Statistics. | MR 1704442 | Zbl 1066.62521

[70] Woodroofe M. (1970). On choosing a delta sequence. The Annals of Mathematical Statistics, 41 : 1665-1671. | MR 270515 | Zbl 0229.62022