The Quantum Birkhoff Normal Form and Spectral Asymptotics
Journées équations aux dérivées partielles, (2006), p. 1-12
In this talk we explain a simple treatment of the quantum Birkhoff normal form for semiclassical pseudo-differential operators with smooth coefficients. The normal form is applied to describe the discrete spectrum in a generalised non-degenerate potential well, yielding uniform estimates in the energy E. This permits a detailed study of the spectrum in various asymptotic regions of the parameters (E,), and gives improvements and new proofs for many of the results in the field. In the completely resonant case we show that the pseudo-differential operator can be reduced to a Toeplitz operator on a reduced symplectic orbifold. Using this quantum reduction, new spectral asymptotics concerning the fine structure of eigenvalue clusters are proved.
Classification:  58J40,  58J50,  58K50,  47B35,  53D20,  81S10
     author = {V\~u Ng\d oc, San},
     title = {The Quantum Birkhoff Normal Form and Spectral Asymptotics},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2006},
     pages = {1-12},
     doi = {10.5802/jedp.37},
     language = {en},
     url = {http://}
Vũ Ngọc, San. The Quantum Birkhoff Normal Form and Spectral Asymptotics. Journées équations aux dérivées partielles,  (2006), pp. 1-12. doi : 10.5802/jedp.37.

[1] G.D. Birkhoff. Dynamical systems. AMS, 1927. | Zbl 0171.05402

[2] L. Charles. Toeplitz operators and Hamiltonian torus actions. Jour. Funct. Analysis, 2006. To appear. | MR 2227136 | Zbl 1099.53059

[3] L. Charles and S. Vũ Ngọc. Spectral asymptotics via the semiclassical birkhoff normal form. math.SP/0605096.

[4] Y. Colin de Verdière. Sur le spectre des opérateurs elliptiques à bicaractéristiques toutes périodiques. Comment. Math. Helv., 54:508–522, 1979. | MR 543346 | Zbl 0459.58014

[5] J. J. Duistermaat. Non-integrability of the 1:1:2 resonance. Ergodic Theory Dynamical Systems, 4:553–568, 1984. | MR 779713 | Zbl 0537.58026

[6] B. Helffer and J. Sjöstrand. Multiple wells in the semi-classical limit. I. Comm. Partial Differential Equations, 9:337–408, 1984. | MR 740094 | Zbl 0546.35053

[7] M. Hitrik, J. Sjöstrand, and S. Vũ Ngọc. Diophantine tori and spectral asymptotics for non-selfadjoint operators. math.SP/0502032. À paraître dans Am. J. Math., 2005.

[8] R. Pérez-Marco. Convergence or generic divergence of the Birkhoff normal form. Ann. of Math. (2), 157(2):557–574, 2003. | MR 1973055 | Zbl 1038.37048

[9] G. Popov. Invariant tori, effective stability, and quasimodes with exponentially small error terms. II. Quantum Birkhoff normal forms. Ann. Henri Poincaré, 1(2):249–279, 2000. | MR 1770800 | Zbl 1002.37028

[10] B. Simon. Semiclassical analysis of low lying eigenvalues I. Ann. Inst. H. Poincaré. Phys. Théor., 38(3):295–307, 1983. a correction in 40:224. | Numdam | Numdam | MR 708966 | Zbl 0537.35023

[11] J. Sjöstrand. Semi-excited states in nondegenerate potential wells. Asymptotic Analysis, 6:29–43, 1992. | MR 1188076 | Zbl 0782.35050

[12] S. Vũ Ngọc. Sur le spectre des systèmes complètement intégrables semi-classiques avec singularités. PhD thesis, Université Grenoble 1, 1998.

[13] A. Weinstein. Asymptotics of eigenvalue clusters for the laplacian plus a potential. Duke Math. J., 44(4):883–892, 1977. | MR 482878 | Zbl 0385.58013

[14] Nguyên Tiên Zung. Convergence versus integrability in Birkhoff normal form. Ann. of Math. (2), 161(1):141–156, 2005. | MR 2150385 | Zbl 1076.37045