Inequalities for Dirichlet and Neumann eingenvalues of the laplacian for domains on spheres
Journées équations aux dérivées partielles, (1997), article no. 1, 15 p.
@article{JEDP_1997____A1_0,
     author = {Ashbaugh, Mark S. and Levine, Howard A.},
     title = {Inequalities for Dirichlet and Neumann eingenvalues of the laplacian for domains on spheres},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     publisher = {Ecole polytechnique},
     year = {1997},
     zbl = {01808661},
     language = {en},
     url = {http://www.numdam.org/item/JEDP_1997____A1_0}
}
Ashbaugh, M.; Levine, Howard A. Inequalities for Dirichlet and Neumann eingenvalues of the laplacian for domains on spheres. Journées équations aux dérivées partielles,  (1997), article  no. 1, 15 p. http://www.numdam.org/item/JEDP_1997____A1_0/

[1] M. Abramowitz and I.A. Stegun, editors, Handbook of Mathematical Functions, National Bureau of Standards Applied Mathematics Series, vol. 55, U.S. Government Printing Office, Washington, D.C., 1964. | MR 29 #4914 | Zbl 0171.38503

[2] M.S. Ashbaugh and R.D. Benguria, Universal bounds for the low eigenvalues of Neumann Laplacians in n dimensions, SIAM J. Math. Anal. 24 (1993), 557-570. | MR 94b:35191 | Zbl 0796.35122

[3] M.S. Ashbaugh and R.D. Benguria, Isoperimetric inequalities for eigenvalue ratios, Partial Differential Equations of Elliptic Type, Cortona, 1992, A. Alvino, E. Fabes, and G. Talenti, editors, Symposia Mathematica, vol. 35, Cambridge University Press, Cambridge, 1994, pp. 1-36. | MR 95h:35158 | Zbl 0814.35081

[4] M.S. Ashbaugh and R.D. Benguria, Sharp upper bound to the first nonzero Neumann eigenvalue for bounded domains in spaces of constant curvature, J. London Math. Soc. (2) 52 (1995), 402-416. | MR 97d:35160 | Zbl 0835.58037

[5] P. Aviles, Symmetry theorems related to Pompeiu's problem, Amer. J. Math. 108 (1986), 1023-1036. | MR 88d:35070 | Zbl 0644.35075

[6] C. Bandle, Isoperimetric Inequalities and Applications, Pitman Monographs and Studies in Mathematics, vol. 7, Pitman, Boston, 1980. | MR 81e:35095 | Zbl 0436.35063

[7] I. Chavel, Lowest eigenvalue inequalities, Proc. Symp. Pure Math., vol. 36, Geometry of the Laplace Operator, R. Osserman and A. Weinstein, editors, Amer. Math. Soc., Providence, R.I., 1980, pp. 79-89. | MR 81f:58039 | Zbl 0467.58025

[8] I. Chavel, Eigenvalues in Riemannian Geometry, Academic, New York, 1984. | MR 86g:58140 | Zbl 0551.53001

[9] G. Faber, Beweis, dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt, Sitzungberichte der mathematisch-physikalischen Klasse der Bayerischen Akademie der Wissenschaften zu München Jahrgang, 1923, pp. 169-172. | JFM 49.0342.03

[10] S. Friedland and W.K. Hayman, Eigenvalue inequalities for the Dirichlet problem on spheres and the growth of subharmonic functions, Comment. Math. Helvetici 51 (1976), 133-161. | MR 54 #568 | Zbl 0339.31003

[11] L. Friedlander, Some inequalities between Dirichlet and Neumann eigenvalues, Arch. Rational Mech. Anal. 116 (1991), 153-160. | MR 93h:35146 | Zbl 0789.35124

[12] E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises, Math. Ann. 94 (1925), 97-100. | JFM 51.0356.05

[13] E. Krahn, Über Minimaleigenschaften der Kugel in drei und mehr Dimensionen, Acta Comm. Univ. Tartu (Dorpat) A9 (1926), 1-44 [English translation in Edgar Krahn 1894-1961: A Centenary Volume, Ü. Lumiste and J. Peetre, editors, IOS Press, Amsterdam, 1994, pp. 139-174]. | JFM 52.0510.03

[14] H.A. Levine, Some remarks on inequalities between Dirichlet and Neumann eigenvalues, Maximum Principles and Eigenvalue Problems in Partial Differential Equations, P.W. Schaefer, editor, Pitman Research Notes in Mathematics Series, vol. 175, Longman Scientific and Technical, Harlow, Essex, United Kingdom, 1988, pp. 121-133. | MR 89j:35099 | Zbl 0669.35091

[15] H.A. Levine and H.F. Weinberger, Inequalities between Dirichlet and Neumann eigenvalues, Arch. Rational Mech. Anal. 94 (1986), 193-208. | MR 87k:35186 | Zbl 0608.35047

[16] R. Mazzeo, Remarks on a paper of Friedlander concerning inequalities between Neumann and Dirichlet eigenvalues, Int. Math. Research Notices, No. 4 (1991), 41-48. | MR 93h:35147 | Zbl 0752.58035

[17] R. Molzon, Symmetry and overdetermined boundary value problems, Forum Math. 3 (1991), 143-156. | MR 92f:58181 | Zbl 0789.35118

[18] L.E. Payne, Inequalities for eigenvalues of membranes and plates, J. Rational Mech. Anal. 4 (1955), 517-529. | MR 17,42a | Zbl 0064.34802

[19] L.E. Payne, Some comments on the past fifty years of isoperimetric inequalities, Inequalities: Fifty Years On from Hardy, Littlewood, and Pólya, W.N. Everitt, editor, Marcel Dekker, New York, 1991, pp. 143-161. | MR 92f:26042 | Zbl 0723.52003

[20] F. Rellich, Darstellung der Eigenwerte Δu + λu = 0 durch ein Randintegral, Math. Z. 46 (1940), 635-636. | JFM 66.0460.01 | MR 2,56d | Zbl 0023.04204

[21] G.V. Rozenblum, M.A. Shubin, and M.Z. Solomyak, Spectral Theory of Differential Operators (translated from the Russian by T. Zastawniak), Partial Differential Equations VII, M.A. Shubin, editor, Encyclopedia of Mathematical Sciences, vol. 64, R.V. Gamkrelidze, editor-in-chief, Springer, Berlin, 1994. | Zbl 0805.35081

[22] E. Sperner, Zur Symmetrisierung von Funktionen auf Sphären, Math. Z. 134 (1973), 317-327. | MR 49 #5310 | Zbl 0283.26015

[23] G. Szegö, Inequalities for certain eigenvalues of a membrane of given area, J. Rational Mech. Anal. 3 (1954), 343-356. | MR 15,877c | Zbl 0055.08802

[24] H.F. Weinberger, An isoperimetric inequality for the n-dimensional free membrane problem, J. Rational Mech. Anal. 5 (1956), 633-636. | MR 18,63c | Zbl 0071.09902