Uniformly growing backtrack trees
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 29 (1995) no. 1, pp. 45-73.
@article{ITA_1995__29_1_45_0,
     author = {Kemp, Rainer},
     title = {Uniformly growing backtrack trees},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {45--73},
     publisher = {EDP-Sciences},
     volume = {29},
     number = {1},
     year = {1995},
     zbl = {0889.68114},
     mrnumber = {1315700},
     language = {en},
     url = {http://www.numdam.org/item/ITA_1995__29_1_45_0/}
}
TY  - JOUR
AU  - Kemp, Rainer
TI  - Uniformly growing backtrack trees
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 1995
DA  - 1995///
SP  - 45
EP  - 73
VL  - 29
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/ITA_1995__29_1_45_0/
UR  - https://zbmath.org/?q=an%3A0889.68114
UR  - https://www.ams.org/mathscinet-getitem?mr=1315700
LA  - en
ID  - ITA_1995__29_1_45_0
ER  - 
Kemp, Rainer. Uniformly growing backtrack trees. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 29 (1995) no. 1, pp. 45-73. http://www.numdam.org/item/ITA_1995__29_1_45_0/

1. M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, New York, 1970.

2. L. Comtet, Advanced Combinatorics, D. Reidel, Dordrecht-Holland/Boston-USA, 1974. | MR 460128 | Zbl 0283.05001

3. R. Kemp, Fundamentals of the Average Case Analysis of Particular Algorithms, Wiley-Teubner Series in Computer Science. Stuttgart, Teubner, Chichester, Wiley 1984. | MR 786659 | Zbl 0638.68026

4. R. Kemp, The Analysis of an Additive Weight of Random Trees, J. Inf. Process. Cybern. EIK, 1987, 23, pp. 517-528. | MR 935266 | Zbl 0641.68095

5. R. Kemp, The Expected Additive Weight of Trees, Acta Informatica, 1989, Vol. 26, pp. 711-740. | MR 1021787 | Zbl 0685.68023

6. R. Kemp, Further Results on Leftist Trees, Random Graphs' 87, Wiley, 1990, pp. 103-130. | MR 1094127 | Zbl 0742.05030

7. R. Kemp, On the Stack Size of a Class of Backtrack Trees, Teubner-Texte zur Informatik, Band 1, Teubner, 1992, pp. 269-282. | MR 1182576

8. D. E. Knuth, The Art of Computer Programming, Vol. 1, (2nd. ed.), Addison Wesley, Reading Mass, 1973. | MR 378456

9. P. W. Purdom, Tree Size by Partial Backtracking, SIAM J. Comput., 1978, 7, 4, pp. 481-491. | MR 508608 | Zbl 0386.68044

10. U. Trier, Additive Weights of a Special Class of Nonuniformly Distributed Backtrack Trees, Inform. Proc. Letters, 1992, 42, pp. 67-76. | MR 1170871 | Zbl 0780.68068

11. U. Trier, On the Average Number of Registers Needed to Evaluate a Special Class of Backtrack Trees, R.A.I.R.O. Informatique théorique et Applications/Theoretical Informatics and Applications, 1993, 27, 6, pp. 541-554. | EuDML 92465 | Numdam | MR 1258751 | Zbl 0809.68104