Efficient distributed algorithms by using the archimedean time assumption
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 23 (1989) no. 1, pp. 113-128.
@article{ITA_1989__23_1_113_0,
     author = {Spirakis, Paul and Tampakas, Basil},
     title = {Efficient distributed algorithms by using the archimedean time assumption},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {113--128},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {1},
     year = {1989},
     zbl = {0665.68032},
     mrnumber = {990071},
     language = {en},
     url = {http://www.numdam.org/item/ITA_1989__23_1_113_0/}
}
TY  - JOUR
AU  - Spirakis, Paul
AU  - Tampakas, Basil
TI  - Efficient distributed algorithms by using the archimedean time assumption
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 1989
DA  - 1989///
SP  - 113
EP  - 128
VL  - 23
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/ITA_1989__23_1_113_0/
UR  - https://zbmath.org/?q=an%3A0665.68032
UR  - https://www.ams.org/mathscinet-getitem?mr=990071
LA  - en
ID  - ITA_1989__23_1_113_0
ER  - 
Spirakis, Paul; Tampakas, Basil. Efficient distributed algorithms by using the archimedean time assumption. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 23 (1989) no. 1, pp. 113-128. http://www.numdam.org/item/ITA_1989__23_1_113_0/

1. D. Angluin, Local and Global Properties in Networks of processes, Proc. 12th A.C.M. Symp. on Theory of Computing, April 1980, pp. 82-93.

2. C. Attiya, M. Snir and M. Warminth, Computing on an Anonymous Ring, Proc. 4th A.C.M. Symp. on Principles of Distributed Computing, Aug. 1985, pp. 196-204.

3. P. J. Courtois, F. Heymans and D. L. Parnas, Concurrent Control with Readers and Writers, C.A.C.M., Vol. 14, No. 10, pp. 667-668.

4. G. Frederickson and N. Lynch, The Impact of Synchronous Communication on the Problem of Electing a Leader in a Ring, Proc. 16th A.C.M. Symp. on Theory of Computing, April 1984, pp. 493-503.

5. G. Frederickson and N. Santoro, Breaking Symmetry in Synchronous Networks, V.L.S.I. Algorithms and Architectures, AWOC 1986, Lecture Notes in Computer Science, No. 227, Springer Verlag, pp. 26-33. | MR 861955 | Zbl 0599.68049

6. E. Gafni, Improvements in the Time Complexity of two Message-optimal Election Algorithms Proc. 4th A.C.M. Symp. on Principles of Distributed Computing, Aug. 1985, pp. 175-185.

7. A. Itai and M. Rodeh, Symmetry Breaking in Distributive Networks, Proc. 22nd I.E.E.E. Symp. on Foundations of Computer Science, Oct. 1981, pp. 150-158.

8. L. Lamport, Concurrent Reading and Writing, C.A.C.M., Vol. 20, No. 11, 1977, pp. 806-811. | MR 464646 | Zbl 0361.68091

9. L. Lamport, Time Clocks and the Ordering of Events in a Distributed System, C.A.C.M., Vol. 21, No. 7, 1978, pp. 558-565. | Zbl 0378.68027

10. J. Van Leeuwen, N. Santoro, J. Urrutia and S. Zaks, Guessing Games and Distributed Computations in Synchronous Networks, 14th I.C.A.L.R, L.N.C.S., No. 267, 1987, pp. 347-356, Springer-Verlag. | MR 912720 | Zbl 0643.68020

11. M. Overmars and N. Santoro, An Improved Election Algorithm for Synchronous Rings, preliminary draft, Carleton University, March 1986.

12. M. Raynal, Algorithms for Mutual Exclusion, The M.I.T. Press, 1986.

13. J. Reif and P. Spirakis, Real Time Synchronization of Interprocess Communication, A.C.M. Transactions of Programming Languages and Systems, April 1984. | Zbl 0536.68021

14. J. Reif and P. Spirakis, Unbounded Speed Variability in Distributed Systems, S.I.A.M. Journal of Computing, February 1985. | MR 774928 | Zbl 0552.68025

15. G. Ricart and A. Agrawala, An Optimal Algorithm for Mutual Exclusion in Computer Networks, C.A.C.M., Vol. 24, No. 1, Jan., 1981. | MR 600729

16. N. Santoro and D. Rotem, On the Complexity of Distributed Elections is synchronous graphs, Proc. 11th Int. Workshop on Graphtheoretic Concepts in Computer Science, June 1985, pp. 337-346.

17. P. Vitányi, Distributed Elections in an Archimedean Ring of Processors, Proc. 16th A.C.M. Symp. on Theory of Computing, April 1984, pp. 542-547.