Rational nilpotent groups as subgroups of self-homotopy equivalences
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Volume 42 (2001) no. 2, pp. 137-153.
@article{CTGDC_2001__42_2_137_0,
     author = {Piccarreta, Salvina},
     title = {Rational nilpotent groups as subgroups of self-homotopy equivalences},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     pages = {137--153},
     publisher = {Dunod \'editeur, publi\'e avec le concours du CNRS},
     volume = {42},
     number = {2},
     year = {2001},
     mrnumber = {1839360},
     zbl = {0984.55004},
     language = {en},
     url = {http://www.numdam.org/item/CTGDC_2001__42_2_137_0/}
}
TY  - JOUR
AU  - Piccarreta, Salvina
TI  - Rational nilpotent groups as subgroups of self-homotopy equivalences
JO  - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY  - 2001
SP  - 137
EP  - 153
VL  - 42
IS  - 2
PB  - Dunod éditeur, publié avec le concours du CNRS
UR  - http://www.numdam.org/item/CTGDC_2001__42_2_137_0/
LA  - en
ID  - CTGDC_2001__42_2_137_0
ER  - 
%0 Journal Article
%A Piccarreta, Salvina
%T Rational nilpotent groups as subgroups of self-homotopy equivalences
%J Cahiers de Topologie et Géométrie Différentielle Catégoriques
%D 2001
%P 137-153
%V 42
%N 2
%I Dunod éditeur, publié avec le concours du CNRS
%U http://www.numdam.org/item/CTGDC_2001__42_2_137_0/
%G en
%F CTGDC_2001__42_2_137_0
Piccarreta, Salvina. Rational nilpotent groups as subgroups of self-homotopy equivalences. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Volume 42 (2001) no. 2, pp. 137-153. http://www.numdam.org/item/CTGDC_2001__42_2_137_0/

[1] M. Arkowitz, The Group of Self-Homotopy Equivalences - a survey, in: Groups of Self-Equivalences and Related Topics, Lectures Notes in Mathematics, Vol. 1425 (Springer, Berlin, 1990), 170-203. | MR | Zbl

[2] M. Arkowitz, C.R. Curjel, Groups of Homotopy classes, Lectures Notes in Mathematics (Springer, Berlin, 1967). | MR | Zbl

[3] M. Arkowitz, C.R. Curjel, The group of Homotopy Equivalences of a Space, Bull. Amer. Math. Soc., 70 (1964), 293-296. | MR | Zbl

[4] M. Arkowitz, G. Lupton, Equivalence Classes of Homotopy-Associative Comultiplications of Finite Complexes, Journal of Pure and Applied Alg. 102 (1995), 109-136. | MR | Zbl

[5] M. Arkowitz, G. Lupton, On Finiteness of Subgroups of Self-Homotopy Equivalences, Contemp. Math. 181 (1995), 1-25. | MR | Zbl

[6] M. Arkowitz, G. Lupton, On the Nilpotency of Subgroups of Self-Homotopy Equivalences, Prog. in Math. 136 (1996), 1-22. | MR | Zbl

[7] G. Baumslag, Lecture Notes on Nilpotent groups, Regional Conference Series in Mathematics (American Mathematical Society, Providence, 1971). | MR | Zbl

[8] P. Deligne, P. Griffiths, J. Morgan, D. Sullivan, Real Homotopy Theory of Kähler Manifolds, Invent. Math., 29 (1975), 245-274. | MR | Zbl

[9] E. Dror-Farjoun, A. Zabrodsky, Unipotency and Nilpotency in Homotopy Equivalences, Topology, 18 (1979), 187-197. | MR | Zbl

[10] W.H. Greub, S. Halperin, J.K. Vanstone, Connections, curvature and cohomology, vol. III (Academic Press, New York, 1975). | Zbl

[11] P. Griffiths, J. Morgan, Rational Homotopy Theory and Differential Forms, Progress in Math. Vol. 15 (Birkhäuser, Boston, 1981). | MR | Zbl

[12] F. Grunewald, J. O'Halloran, Nilpotent Groups and Unipotent Algebraic Groups, J. of Pure and Applied Algebra 37 (1985), 299-313. | MR | Zbl

[13] F. Grunewald, R. Scharlau, A Note on Finitely Generated Torsion-free Nilpotent Groups of Class 2, J. Algebra 58 (1979), 162-175. | MR | Zbl

[14] F. Grunewald, D. Segal, L. Sterling, Nilpotent Groups of Hirsch Length Six, Math. Z. 179 (1982), 219-235. | MR | Zbl

[15] P. Hall, The Edmonton Notes on Nilpotent Groups. Queen Mary College, Mathematics Notes (Mathematics Department Queen Mary College, London, 1969). | MR | Zbl

[16] S. Halperin, J. Stasheff, Obstructions to Homotopy Equivalences, Adv. in Math. 32 (1979), 233-279. | MR | Zbl

[17] P.J. Hilton, On the Homotopy Groups of the Union of Spheres, J. London Math. Soc. 30 (1955), 154-172. | MR | Zbl

[18] P.J. Hilton, G. Mislin, J. Roitberg, Localization of Nilpotent Groups and Spaces, Notas de Matematica, 15 (North Holland, Amsterdam, 1975). | Zbl

[19] K.I. Maruyama, Localization of a Certain Subgroups of Self-Homotopy Equivalences, Pac. J. of Math 136 (1989), 293-301. | MR | Zbl

[20] K.-I. Maruyama, Finiteness Properties of Self-Homotopy Equivalences Inducing the Identity on Homology, Math. Proc. Camb. Phil. Soc., 108 (1990), 291-297. | MR | Zbl

[21] J. Neisendorfer, T.J. Miller, Formal and Coformal Spaces, Illinois J. Math 22 (1978), 565-580. | MR | Zbl

[22] J.-P. Serre, Lie Algebras and Lie Groups (Benjamin, New York, 1965). | MR | Zbl

[23] D. Tanré, Homotopie Rationelle: Modèles de Chen, Quillen, Sullivan, Lectures Notes in Mathematics, Vol. 1025 (Springer, Berlin, 1983). | MR | Zbl