Deformations of (bi)tensor categories
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Volume 39 (1998) no. 3, p. 163-180
@article{CTGDC_1998__39_3_163_0,
     author = {Crane, Louis and Yetter, David N.},
     title = {Deformations of (bi)tensor categories},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     publisher = {Dunod \'editeur, publi\'e avec le concours du CNRS},
     volume = {39},
     number = {3},
     year = {1998},
     pages = {163-180},
     zbl = {0916.18005},
     mrnumber = {1641842},
     language = {en},
     url = {http://www.numdam.org/item/CTGDC_1998__39_3_163_0}
}
Crane, L.; Yetter, D. N. Deformations of (bi)tensor categories. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Volume 39 (1998) no. 3, pp. 163-180. http://www.numdam.org/item/CTGDC_1998__39_3_163_0/

[1] D. Bar-Natan, On the Vassiliev knot invariants, Topology 34 (2) (1995) 423ff. | MR 1318886 | Zbl 0898.57001

[2] J. Birman and X.-S. Lin, Vertex models, quantum groups and Vassiliev's knot invariants, preprint.

[3] V. Chiari and A. Pressley, A Guide to Quantum Groups, Cambridge University Press, Cambridge, 1994. | Zbl 0839.17009

[4] L. Crane, Clock and category, is quantum gravity algebraic? JMP 36 (1995), 6180ff. | MR 1355904 | Zbl 0848.57035

[5] L. Crane and Igor B. Frenkel, Four dimensional topological quantum field theory, Hopf categories, and the canonical bases, JMP 35 (10) (1994), 5136ff. | MR 1295461 | Zbl 0892.57014

[6] L. Crane and D.N. Yetter, Examples of categorification, Cahiers de Top. et Geom. Diff. Cat. (to appear). | Numdam | MR 1615394 | Zbl 0895.18004

[7] L. Crane and D.N. Yetter, On algebraic structures implicit in TQFTs, JKTR (to appear).

[8] R. Dijkgraf and E. Witten, Topological gauge theories and group cohomology, CMP 129 (1990), 393-429. | MR 1048699 | Zbl 0703.58011

[9] Epstein, D.B.A., Functors between tensored categories, Invent. Math. 1 (1966) 221-228. | MR 213412 | Zbl 0146.02502

[10] P. Etingof and D. Kazhdan, Quantization of Lie bialgebras I, e-print q-alg 9506005.

[11] M. Gerstenhaber and S. Schack, Algebras, bialgebras quantum groups and algebraic deformations, in Deformation Theory and Quantum Groups with Applications to Mathematical Physics (M. Gerstenhaber and J. Stasheff, eds.), Contemporary Mathematics 134, AMS, Providence RI, 1992. | MR 1187275 | Zbl 0788.17009

[12] M. Kapranov and V. Voevodsky, 2-categories and Zamolodchikov's tetrahedral equation, preprint. | MR 1278735

[13] V. Lunts and A. Rosenberg, Localization for Quantum groups, preprint. | MR 1694897 | Zbl 0928.16020

[14] G. Lusztig, Canonical bases in tensor products, Proc Nat Acad Sci 89 (1992), 8177-8179. | MR 1180036 | Zbl 0760.17011

[15] G. Lusztig, Introduction to Quantum Groups, Birkhauser, Boston, 1993. | MR 1227098 | Zbl 0788.17010

[16] S. Maclane, Categories for the Working Mathematician, Springer Verlag, Berlin, 1971. | MR 354798 | Zbl 0705.18001

[17] J.P. Moussouris, Quantum models of spacetime based on recoupling theory, D.Phil. thesis, Oxford University, 1983.

[18] N. Reshetiknin, Quantization of Lie bialgebras, Duke Math Journal Int Math Res Notices, 7, 143-151. | MR 1174619 | Zbl 0760.17012

[19] D.N. Yetter, Braided categories and Vassiliev invariants, II, unpublished lecture, Workshop on Discriminant Loci, Utrecht University, August 26, 1996.

[20] D.N. Yetter, Framed tangles and a theorem of Deligne on braided deformations of Tannakian categories, in Deformation Theory and Quantum Groups with Applications to Mathematical Physics (M. Gerstenhaber and J. Stasheff, eds.), Contemporary Mathematics 134, AMS, Providence RI, 1992. | MR 1187296 | Zbl 0812.18005