Functional analysis/Geometry
Uniform nonextendability from nets
Comptes Rendus. Mathématique, Volume 353 (2015) no. 11, pp. 991-994.

It is shown that there exist Banach spaces X,Y, a 1-net N of X and a Lipschitz function f:NY such that every F:XY that extends f is not uniformly continuous.

On montre qu'il existe des espaces de Banach X,Y, un réseau N de X et une application lipschitzienne f:NY telle qu'aucune extension F:XY de f n'est uniformément continue.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2015.09.005
Naor, Assaf 1

1 Mathematics Department, Princeton University, Fine Hall, Washington Road, Princeton, NJ 08544-1000, USA
@article{CRMATH_2015__353_11_991_0,
     author = {Naor, Assaf},
     title = {Uniform nonextendability from nets},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {991--994},
     publisher = {Elsevier},
     volume = {353},
     number = {11},
     year = {2015},
     doi = {10.1016/j.crma.2015.09.005},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2015.09.005/}
}
TY  - JOUR
AU  - Naor, Assaf
TI  - Uniform nonextendability from nets
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 991
EP  - 994
VL  - 353
IS  - 11
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2015.09.005/
DO  - 10.1016/j.crma.2015.09.005
LA  - en
ID  - CRMATH_2015__353_11_991_0
ER  - 
%0 Journal Article
%A Naor, Assaf
%T Uniform nonextendability from nets
%J Comptes Rendus. Mathématique
%D 2015
%P 991-994
%V 353
%N 11
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2015.09.005/
%R 10.1016/j.crma.2015.09.005
%G en
%F CRMATH_2015__353_11_991_0
Naor, Assaf. Uniform nonextendability from nets. Comptes Rendus. Mathématique, Volume 353 (2015) no. 11, pp. 991-994. doi : 10.1016/j.crma.2015.09.005. http://www.numdam.org/articles/10.1016/j.crma.2015.09.005/

[1] Aharoni, I.; Maurey, B.; Mityagin, B.S. Uniform embeddings of metric spaces and of Banach spaces into Hilbert spaces, Israel J. Math., Volume 52 (1985) no. 3, pp. 251-265

[2] Andoni, A.; Krauthgamer, R.; Razenshteyn, I.P. Sketching and embedding are equivalent for norms, Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing, 2015, pp. 479-488

[3] Ball, K. Markov chains, Riesz transforms and Lipschitz maps, Geom. Funct. Anal., Volume 2 (1992) no. 2, pp. 137-172

[4] Benyamini, Y.; Lindenstrauss, J. Geometric Nonlinear Functional Analysis, Vol. 1, American Mathematical Society Colloquium Publications, vol. 48, American Mathematical Society, Providence, RI, 2000

[5] Gromov, M. Asymptotic invariants of infinite groups, Sussex, 1991 (London Math. Soc. Lecture Note Ser.), Volume vol. 182, Cambridge Univ. Press, Cambridge (1993), pp. 1-295

[6] Johnson, W.B.; Randrianarivony, N.L. lp (p>2) does not coarsely embed into a Hilbert space, Proc. Amer. Math. Soc., Volume 134 (2006) no. 4, pp. 1045-1050 (electronic)

[7] Kalton, N.J. Coarse and uniform embeddings into reflexive spaces, Q. J. Math., Volume 58 (2007) no. 3, pp. 393-414

[8] Kalton, N.J. The uniform structure of Banach spaces, Math. Ann., Volume 354 (2012) no. 4, pp. 1247-1288

[9] Kraus, M. Coarse and uniform embeddings between Orlicz sequence spaces, Mediterr. J. Math., Volume 11 (2014) no. 2, pp. 653-666

[10] Lindenstrauss, J. On nonlinear projections in Banach spaces, Michigan Math. J., Volume 11 (1964), pp. 263-287

[11] Mendel, M.; Naor, A. Metric cotype, Ann. of Math. (2), Volume 168 (2008) no. 1, pp. 247-298

[12] Mendel, M.; Naor, A. Spectral calculus and Lipschitz extension for barycentric metric spaces, Anal. Geom. Metr. Spaces, Volume 1 (2013), pp. 163-199

[13] Naor, A. A phase transition phenomenon between the isometric and isomorphic extension problems for Hölder functions between Lp spaces, Mathematika, Volume 48 (2003) no. 1–2, pp. 253-271 (2001)

[14] Pisier, G. Martingales with values in uniformly convex spaces, Israel J. Math., Volume 20 (1975) no. 3–4, pp. 326-350

[15] Randrianarivony, N.L. Characterization of quasi-Banach spaces which coarsely embed into a Hilbert space, Proc. Amer. Math. Soc., Volume 134 (2006) no. 5, pp. 1315-1317 (electronic)

[16] C. Rosendal, Equivariant geometry of Banach spaces and topological groups, preprint, 2015.

[17] Yu, G. Higher index theory of elliptic operators and geometry of groups, International Congress of Mathematicians, Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 1623-1639

Cited by Sources:

Supported by NSF grant CCF-0832795, BSF grant 2010021, the Packard Foundation and the Simons Foundation.