It is shown that there exist Banach spaces , a 1-net of X and a Lipschitz function such that every that extends f is not uniformly continuous.
On montre qu'il existe des espaces de Banach , un réseau de X et une application lipschitzienne telle qu'aucune extension de f n'est uniformément continue.
Accepted:
Published online:
@article{CRMATH_2015__353_11_991_0, author = {Naor, Assaf}, title = {Uniform nonextendability from nets}, journal = {Comptes Rendus. Math\'ematique}, pages = {991--994}, publisher = {Elsevier}, volume = {353}, number = {11}, year = {2015}, doi = {10.1016/j.crma.2015.09.005}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2015.09.005/} }
Naor, Assaf. Uniform nonextendability from nets. Comptes Rendus. Mathématique, Volume 353 (2015) no. 11, pp. 991-994. doi : 10.1016/j.crma.2015.09.005. http://www.numdam.org/articles/10.1016/j.crma.2015.09.005/
[1] Uniform embeddings of metric spaces and of Banach spaces into Hilbert spaces, Israel J. Math., Volume 52 (1985) no. 3, pp. 251-265
[2] Sketching and embedding are equivalent for norms, Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing, 2015, pp. 479-488
[3] Markov chains, Riesz transforms and Lipschitz maps, Geom. Funct. Anal., Volume 2 (1992) no. 2, pp. 137-172
[4] Geometric Nonlinear Functional Analysis, Vol. 1, American Mathematical Society Colloquium Publications, vol. 48, American Mathematical Society, Providence, RI, 2000
[5] Asymptotic invariants of infinite groups, Sussex, 1991 (London Math. Soc. Lecture Note Ser.), Volume vol. 182, Cambridge Univ. Press, Cambridge (1993), pp. 1-295
[6] () does not coarsely embed into a Hilbert space, Proc. Amer. Math. Soc., Volume 134 (2006) no. 4, pp. 1045-1050 (electronic)
[7] Coarse and uniform embeddings into reflexive spaces, Q. J. Math., Volume 58 (2007) no. 3, pp. 393-414
[8] The uniform structure of Banach spaces, Math. Ann., Volume 354 (2012) no. 4, pp. 1247-1288
[9] Coarse and uniform embeddings between Orlicz sequence spaces, Mediterr. J. Math., Volume 11 (2014) no. 2, pp. 653-666
[10] On nonlinear projections in Banach spaces, Michigan Math. J., Volume 11 (1964), pp. 263-287
[11] Metric cotype, Ann. of Math. (2), Volume 168 (2008) no. 1, pp. 247-298
[12] Spectral calculus and Lipschitz extension for barycentric metric spaces, Anal. Geom. Metr. Spaces, Volume 1 (2013), pp. 163-199
[13] A phase transition phenomenon between the isometric and isomorphic extension problems for Hölder functions between spaces, Mathematika, Volume 48 (2003) no. 1–2, pp. 253-271 (2001)
[14] Martingales with values in uniformly convex spaces, Israel J. Math., Volume 20 (1975) no. 3–4, pp. 326-350
[15] Characterization of quasi-Banach spaces which coarsely embed into a Hilbert space, Proc. Amer. Math. Soc., Volume 134 (2006) no. 5, pp. 1315-1317 (electronic)
[16] C. Rosendal, Equivariant geometry of Banach spaces and topological groups, preprint, 2015.
[17] Higher index theory of elliptic operators and geometry of groups, International Congress of Mathematicians, Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 1623-1639
Cited by Sources:
☆ Supported by NSF grant CCF-0832795, BSF grant 2010021, the Packard Foundation and the Simons Foundation.