Partial differential equations/Mathematical problems in mechanics
The gradient flow structure for incompressible immiscible two-phase flows in porous media
[La structure de flot gradient pour les écoulements incompressibles immiscible en milieux poreux]
Comptes Rendus. Mathématique, Tome 353 (2015) no. 11, pp. 985-989.

Nous montrons qu'un modèle très couramment utilisé dans l'industrie pour décrire un écoulement diphasique incompressible et immiscible dans un milieux poreux possiblement hétérogène possède une structure de flot gradient. Plus précisément, la composition du fluide est gouvernée par le flot gradient d'une énergie singulière. En partant de cette énergie et d'un potentiel de dissipation, nous retrouvons les lois de Darcy–Muskat et de pression capillaire gouvernant l'écoulement à l'aide d'un principe de moindre dissipation de l'énergie. Notre interprétation ne nécessite pas l'introduction d'une transformation algébrique du type pression globale ou transformée de Kirchhoff, ce qui permet son extension à un nombre plus grand de phases.

We show that the widely used model governing the motion of two incompressible immiscible fluids in a possibly heterogeneous porous medium has a formal gradient-flow structure. More precisely, the fluid composition is governed by the gradient flow of some non-smooth energy. Starting from this energy together with a dissipation potential, we recover the celebrated Darcy–Muskat law and the capillary pressure law governing the flow thanks to the steepest descent condition for the energy. Our interpretation does not require the introduction of any algebraic transformation like, e.g., the global pressure or the Kirchhoff transform, and can be transposed to the case of more phases.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.09.021
Cancès, Clément 1 ; Gallouët, Thomas O. 2 ; Monsaingeon, Léonard 3

1 Team RAPSODI, Inria Lille–Nord Europe, 40, avenue Halley, 59650 Villeneuve-d'Ascq, France
2 CMLS, UMR 7640, École polytechnique, 91128 Palaiseau cedex, France
3 CAMGSD, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
@article{CRMATH_2015__353_11_985_0,
     author = {Canc\`es, Cl\'ement and Gallou\"et, Thomas O. and Monsaingeon, L\'eonard},
     title = {The gradient flow structure for incompressible immiscible two-phase flows in porous media},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {985--989},
     publisher = {Elsevier},
     volume = {353},
     number = {11},
     year = {2015},
     doi = {10.1016/j.crma.2015.09.021},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2015.09.021/}
}
TY  - JOUR
AU  - Cancès, Clément
AU  - Gallouët, Thomas O.
AU  - Monsaingeon, Léonard
TI  - The gradient flow structure for incompressible immiscible two-phase flows in porous media
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 985
EP  - 989
VL  - 353
IS  - 11
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2015.09.021/
DO  - 10.1016/j.crma.2015.09.021
LA  - en
ID  - CRMATH_2015__353_11_985_0
ER  - 
%0 Journal Article
%A Cancès, Clément
%A Gallouët, Thomas O.
%A Monsaingeon, Léonard
%T The gradient flow structure for incompressible immiscible two-phase flows in porous media
%J Comptes Rendus. Mathématique
%D 2015
%P 985-989
%V 353
%N 11
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2015.09.021/
%R 10.1016/j.crma.2015.09.021
%G en
%F CRMATH_2015__353_11_985_0
Cancès, Clément; Gallouët, Thomas O.; Monsaingeon, Léonard. The gradient flow structure for incompressible immiscible two-phase flows in porous media. Comptes Rendus. Mathématique, Tome 353 (2015) no. 11, pp. 985-989. doi : 10.1016/j.crma.2015.09.021. http://www.numdam.org/articles/10.1016/j.crma.2015.09.021/

[1] Agueh, M. Existence of solutions to degenerate parabolic equations via the Monge–Kantorovich theory, Adv. Difference Equ., Volume 10 (2005) no. 3, pp. 309-360

[2] Ambrosio, L.; Gigli, N.; Savaré, G. Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008

[3] Antontsev, S.N.; Kazhikhov, A.V.; Monakhov, V.N. Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, Studies in Mathematics and Its Applications, vol. 22, North-Holland Publishing Co., Amsterdam, 1990 (translated from Russian)

[4] Aziz, K.; Settari, A. Petroleum Reservoir Simulation, Elsevier Applied Science Publishers, London, 1979

[5] Bear, J. Dynamic of Fluids in Porous Media, American Elsevier Pub. Co., New York, 1972

[6] Bear, J.; Bachmat, Y. Introduction to Modeling of Transport Phenomena in Porous Media, vol. 4, Springer, 1990

[7] Buzzi, F.; Lenzinger, M.; Schweizer, B. Interface conditions for degenerate two-phase flow equations in one space dimension, Analysis, Volume 29 (2009), pp. 299-316

[8] Cancès, C.; Gallouët, T.; Porretta, A. Two-phase flows involving capillary barriers in heterogeneous porous media, Interfaces Free Bound., Volume 11 (2009) no. 2, pp. 239-258

[9] C. Cancès, C. Guichard, Numerical analysis of a robust entropy-diminishing finite volume scheme for degenerate parabolic equations, HAL: hal-01119735, submitted for publication.

[10] Cancès, C.; Pierre, M. An existence result for multidimensional immiscible two-phase flows with discontinuous capillary pressure field, SIAM J. Math. Anal., Volume 44 (2012) no. 2, pp. 966-992

[11] Chavent, G.; Jaffré, J. Mathematical Models and Finite Elements for Reservoir Simulation, Stud. Math. Appl. Edition, vol. 17, North-Holland, Amsterdam, 1986

[12] Chen, Z. Degenerate two-phase incompressible flow. I. Existence, uniqueness and regularity of a weak solution, J. Differential Equations, Volume 171 (2001) no. 2, pp. 203-232

[13] Chen, Z.; Huan, G.; Ma, Y. Computational Methods for Multiphase Flows in Porous Media, vol. 2, SIAM, 2006

[14] Dolbeault, J.; Nazaret, B.; Savaré, G. A new class of transport distances between measures, Calc. Var. Partial Differential Equations, Volume 34 (2009) no. 2, pp. 193-231

[15] Lisini, S. Nonlinear diffusion equations with variable coefficients as gradient flows in Wasserstein spaces, ESAIM Control Optim. Calc. Var., Volume 15 (2009) no. 3, pp. 712-740

[16] Mielke, A. A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems, Nonlinearity, Volume 24 (2011) no. 4, pp. 1329-1346

[17] Otto, F. The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations, Volume 26 (2001) no. 1–2, pp. 101-174

[18] Peletier, M.A. Variational modelling: energies, gradient flows, and large deviations, Feb. 2014 http://www.win.tue.nl/~mpeletie (Lecture Notes, Würzburg, Germany, Available at)

[19] Schweizer, B. Homogenization of degenerate two-phase flow equations with oil trapping, SIAM J. Math. Anal., Volume 39 (2008) no. 6, pp. 1740-1763

Cité par Sources :