[Noyaux de Bergman et réduction symplectique]
We present several results concerning the asymptotic expansion of the invariant Bergman kernel of the Dirac operator associated with high tensor powers of a positive line bundle on a compact symplectic manifold.
Nous annonçons des résultats sur le développement asymptotique du noyau de Bergman G-invariant de l'opérateur de Dirac associé à une puissance tendant vers l'infini d'un fibré en droites positif sur une variété symplectique compacte.
Accepté le :
Publié le :
Ma, Xiaonan 1 ; Zhang, Weiping 2
@article{CRMATH_2005__341_5_297_0,
author = {Ma, Xiaonan and Zhang, Weiping},
title = {Bergman kernels and symplectic reduction},
journal = {Comptes Rendus. Math\'ematique},
pages = {297--302},
year = {2005},
publisher = {Elsevier},
volume = {341},
number = {5},
doi = {10.1016/j.crma.2005.07.009},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2005.07.009/}
}
TY - JOUR AU - Ma, Xiaonan AU - Zhang, Weiping TI - Bergman kernels and symplectic reduction JO - Comptes Rendus. Mathématique PY - 2005 SP - 297 EP - 302 VL - 341 IS - 5 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2005.07.009/ DO - 10.1016/j.crma.2005.07.009 LA - en ID - CRMATH_2005__341_5_297_0 ER -
Ma, Xiaonan; Zhang, Weiping. Bergman kernels and symplectic reduction. Comptes Rendus. Mathématique, Tome 341 (2005) no. 5, pp. 297-302. doi: 10.1016/j.crma.2005.07.009
[1] J.-M. Bismut, G. Lebeau, Complex immersions and Quillen metrics, Inst. Hautes Études Sci. Publ. Math. (1991), no. 74, ii+298 pp. (1992)
[2] On the asymptotic expansion of Bergman kernel, C. R. Math. Acad. Sci. Paris, Volume 339 (2004) no. 3, pp. 193-198 (The full version: J. Differential Geom., preprint) | arXiv
[3] Geometric quantization and multiplicities of group representations, Invent. Math., Volume 67 (1982) no. 3, pp. 515-538
[4] The Dirac operator on high tensor powers of a line bundle, Math. Z., Volume 240 (2002) no. 3, pp. 651-664
[5] Generalized Bergman kernels on symplectic manifolds, C.R. Math. Acad. Sci. Paris, Volume 339 (2004) no. 7, pp. 493-498 (The full version) | arXiv
[6] X. Ma, W. Zhang, Bergman kernels and symplectic reduction, preprint
[7] Moment maps and equivariant Szegö kernels, J. Symplectic Geom., Volume 2 (2003), pp. 133-175
[8] The Szegö kernel of a symplectic quotient, Adv. Math. (2005) | arXiv
[9] An analytic proof of the geometric quantization conjecture of Guillemin–Sternberg, Invent. Math., Volume 132 (1998) no. 2, pp. 229-259
Cité par Sources :





