Differential Geometry
Bergman kernels and symplectic reduction
[Noyaux de Bergman et réduction symplectique]
Comptes Rendus. Mathématique, Tome 341 (2005) no. 5, pp. 297-302

We present several results concerning the asymptotic expansion of the invariant Bergman kernel of the spinc Dirac operator associated with high tensor powers of a positive line bundle on a compact symplectic manifold.

Nous annonçons des résultats sur le développement asymptotique du noyau de Bergman G-invariant de l'opérateur de Dirac spinc associé à une puissance tendant vers l'infini d'un fibré en droites positif sur une variété symplectique compacte.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2005.07.009

Ma, Xiaonan 1 ; Zhang, Weiping 2

1 Centre de mathématiques, UMR 7640 du CNRS, École polytechnique, 91128 Palaiseau cedex, France
2 Nankai Institute of Mathematics & LPMC, Nankai University, Tianjin 300071, PR China
@article{CRMATH_2005__341_5_297_0,
     author = {Ma, Xiaonan and Zhang, Weiping},
     title = {Bergman kernels and symplectic reduction},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {297--302},
     year = {2005},
     publisher = {Elsevier},
     volume = {341},
     number = {5},
     doi = {10.1016/j.crma.2005.07.009},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.crma.2005.07.009/}
}
TY  - JOUR
AU  - Ma, Xiaonan
AU  - Zhang, Weiping
TI  - Bergman kernels and symplectic reduction
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 297
EP  - 302
VL  - 341
IS  - 5
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.crma.2005.07.009/
DO  - 10.1016/j.crma.2005.07.009
LA  - en
ID  - CRMATH_2005__341_5_297_0
ER  - 
%0 Journal Article
%A Ma, Xiaonan
%A Zhang, Weiping
%T Bergman kernels and symplectic reduction
%J Comptes Rendus. Mathématique
%D 2005
%P 297-302
%V 341
%N 5
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2005.07.009/
%R 10.1016/j.crma.2005.07.009
%G en
%F CRMATH_2005__341_5_297_0
Ma, Xiaonan; Zhang, Weiping. Bergman kernels and symplectic reduction. Comptes Rendus. Mathématique, Tome 341 (2005) no. 5, pp. 297-302. doi: 10.1016/j.crma.2005.07.009

[1] J.-M. Bismut, G. Lebeau, Complex immersions and Quillen metrics, Inst. Hautes Études Sci. Publ. Math. (1991), no. 74, ii+298 pp. (1992)

[2] Dai, X.; Liu, K.; Ma, X. On the asymptotic expansion of Bergman kernel, C. R. Math. Acad. Sci. Paris, Volume 339 (2004) no. 3, pp. 193-198 (The full version: J. Differential Geom., preprint) | arXiv

[3] Guillemin, V.; Sternberg, S. Geometric quantization and multiplicities of group representations, Invent. Math., Volume 67 (1982) no. 3, pp. 515-538

[4] Ma, X.; Marinescu, G. The Spinc Dirac operator on high tensor powers of a line bundle, Math. Z., Volume 240 (2002) no. 3, pp. 651-664

[5] Ma, X.; Marinescu, G. Generalized Bergman kernels on symplectic manifolds, C.R. Math. Acad. Sci. Paris, Volume 339 (2004) no. 7, pp. 493-498 (The full version) | arXiv

[6] X. Ma, W. Zhang, Bergman kernels and symplectic reduction, preprint

[7] Paoletti, R. Moment maps and equivariant Szegö kernels, J. Symplectic Geom., Volume 2 (2003), pp. 133-175

[8] Paoletti, R. The Szegö kernel of a symplectic quotient, Adv. Math. (2005) | arXiv

[9] Tian, Y.; Zhang, W. An analytic proof of the geometric quantization conjecture of Guillemin–Sternberg, Invent. Math., Volume 132 (1998) no. 2, pp. 229-259

Cité par Sources :