Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints
ESAIM: Control, Optimisation and Calculus of Variations, Volume 8 (2002), p. 345-374

The goal of this paper is to derive some error estimates for the numerical discretization of some optimal control problems governed by semilinear elliptic equations with bound constraints on the control and a finitely number of equality and inequality state constraints. We prove some error estimates for the optimal controls in the L norm and we also obtain error estimates for the Lagrange multipliers associated to the state constraints as well as for the optimal states and optimal adjoint states.

DOI : https://doi.org/10.1051/cocv:2002049
Classification:  49J20,  49K20,  49M05,  65K10
Keywords: distributed control, state constraints, semilinear elliptic equation, numerical approximation, finite element method, error estimates
@article{COCV_2002__8__345_0,
     author = {Casas, Eduardo},
     title = {Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {8},
     year = {2002},
     pages = {345-374},
     doi = {10.1051/cocv:2002049},
     zbl = {1066.49018},
     mrnumber = {1932955},
     language = {en},
     url = {http://www.numdam.org/item/COCV_2002__8__345_0}
}
Casas, Eduardo. Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints. ESAIM: Control, Optimisation and Calculus of Variations, Volume 8 (2002) pp. 345-374. doi : 10.1051/cocv:2002049. http://www.numdam.org/item/COCV_2002__8__345_0/

[1] N. Arada, E. Casas and F. Tröltzsch, Error estimates for the numerical approximation of a semilinear elliptic control problem. Comp. Optim. Appl. (to appear). | MR 1937089 | Zbl 1033.65044

[2] V. Arnautu and P. Neittaanmäki, Discretization estimates for an elliptic control problem. Numer. Funct. Anal. Optim. (1998) 431-464. | MR 1636438 | Zbl 0915.49022

[3] J. Bonnans and E. Casas, Contrôle de systèmes elliptiques semilinéaires comportant des contraintes sur l'état, in Nonlinear Partial Differential Equations and Their Applications, Vol. 8, Collège de France Seminar, edited by H. Brezis and J. Lions. Longman Scientific & Technical, New York (1988) 69-86. | Zbl 0656.49011

[4] J. Bonnans and H. Zidani, Optimal control problems with partially polyhedric constraints. SIAM J. Control Optim. 37 (1999) 1726-1741. | MR 1720134 | Zbl 0945.49020

[5] E. Casas and M. Mateos, Second order optimality conditions for semilinear elliptic control problems with finitely many state constraints. SIAM J. Control Optim. 40 (2002) 1431-1454. | MR 1882801 | Zbl 1037.49024

[6] , Uniform convergence of the fem. applications to state constrained control problems. Comp. Appl. Math. 21 (2002). | MR 2009948 | Zbl 1119.49309

[7] E. Casas, M. Mateos and L. Fernández, Second-order optimality conditions for semilinear elliptic control problems with constraints on the gradient of the state. Control Cybernet. 28 (1999) 463-479. | MR 1782012 | Zbl 0947.49019

[8] E. Casas and F. Tröltzsch, Second order necessary optimality conditions for some state-constrained control problems of semilinear elliptic equations. App. Math. Optim. 39 (1999) 211-227. | MR 1665676 | Zbl 0921.49013

[9] , Second order necessary and sufficient optimality conditions for optimization problems and applications to control theory. SIAM J. Optim. (to appear). | MR 1951028 | Zbl 1052.49022

[10] E. Casas, F. Tröltzsch and A. Unger, Second order sufficient optimality conditions for a nonlinear elliptic control problem. J. Anal. Appl. 15 (1996) 687-707. | MR 1406083 | Zbl 0879.49020

[11] , Second order sufficient optimality conditions for some state-constrained control problems of semilinear elliptic equations. SIAM J. Control Optim. 38 (2000) 1369-1391. | MR 1766420 | Zbl 0962.49016

[12] P. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). | MR 520174 | Zbl 0383.65058

[13] F. Clarke, A new approach to Lagrange multipliers. Math. Oper. Res. 1 (1976) 165-174. | MR 414104 | Zbl 0404.90100

[14] R. Falk, Approximation of a class of optimal control problems with order of convergence estimates. J. Math. Anal. Appl. 44 (1973) 28-47. | MR 686788 | Zbl 0268.49036

[15] T. Geveci, On the approximation of the solution of an optimal control problem governed by an elliptic equation. RAIRO: Numer. Anal. 13 (1979) 313-328. | Numdam | MR 555382 | Zbl 0426.65067

[16] H. Goldberg and F. Tröltzsch, Second order sufficient optimality conditions for a class of nonlinear parabolic boundary control problems. SIAM J. Control Optim. 31 (1993) 1007-1025. | MR 1227544 | Zbl 0787.49011

[17] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston-London-Melbourne (1985). | MR 775683 | Zbl 0695.35060

[18] K. Malanowski, C. Büskens and H. Maurer, Convergence of approximations to nonlinear control problems, in Mathematical Programming with Data Perturbation, edited by A. Fiacco. New York, Marcel Dekker, Inc. (1997) 253-284. | MR 1472274 | Zbl 0883.49025

[19] M. Mateos, Problemas de control óptimo gobernados por ecuaciones semilineales con restricciones de tipo integral sobre el gradiente del estado, Ph.D. Thesis. University of Cantabria (2000).

[20] P. Raviart and J. Thomas, Introduction à L'analyse Numérique des Equations aux Dérivées Partielles. Masson, Paris (1983). | Zbl 0561.65069

[21] J. Raymond and F. Tröltzsch, Second order sufficient optimality conditions for nonlinear parabolic control problems with state-constraints. Discrete Contin. Dynam. Systems 6 (2000) 431-450. | MR 1739375 | Zbl 1010.49015