On the existence of nonsmooth control-Lyapunov functions in the sense of generalized gradients
ESAIM: Control, Optimisation and Calculus of Variations, Volume 6 (2001), pp. 593-611.

Let x ˙=f(x,u) be a general control system; the existence of a smooth control-Lyapunov function does not imply the existence of a continuous stabilizing feedback. However, we show that it allows us to design a stabilizing feedback in the Krasovskii (or Filippov) sense. Moreover, we recall a definition of a control-Lyapunov function in the case of a nonsmooth function; it is based on Clarke’s generalized gradient. Finally, with an inedite proof we prove that the existence of this type of control-Lyapunov function is equivalent to the existence of a classical control-Lyapunov function. This property leads to a generalization of a result on the systems with integrator.

Classification: 93D05, 93D15, 93D20, 93D30, 93D09, 93B05
Keywords: asymptotic stabilizability, converse Lyapunov theorem, nonsmooth analysis, differential inclusion, Filippov and krasovskii solutions, feedback
@article{COCV_2001__6__593_0,
     author = {Rifford, Ludovic},
     title = {On the existence of nonsmooth {control-Lyapunov} functions in the sense of generalized gradients},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {593--611},
     publisher = {EDP-Sciences},
     volume = {6},
     year = {2001},
     mrnumber = {1872388},
     zbl = {1002.93058},
     language = {en},
     url = {http://www.numdam.org/item/COCV_2001__6__593_0/}
}
TY  - JOUR
AU  - Rifford, Ludovic
TI  - On the existence of nonsmooth control-Lyapunov functions in the sense of generalized gradients
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2001
SP  - 593
EP  - 611
VL  - 6
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/COCV_2001__6__593_0/
LA  - en
ID  - COCV_2001__6__593_0
ER  - 
%0 Journal Article
%A Rifford, Ludovic
%T On the existence of nonsmooth control-Lyapunov functions in the sense of generalized gradients
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2001
%P 593-611
%V 6
%I EDP-Sciences
%U http://www.numdam.org/item/COCV_2001__6__593_0/
%G en
%F COCV_2001__6__593_0
Rifford, Ludovic. On the existence of nonsmooth control-Lyapunov functions in the sense of generalized gradients. ESAIM: Control, Optimisation and Calculus of Variations, Volume 6 (2001), pp. 593-611. http://www.numdam.org/item/COCV_2001__6__593_0/

[1] Z. Artstein, Stabilization with relaxed controls. Nonlinear Anal. 7 (1983) 1163-1173. | MR | Zbl

[2] J.-P. Aubin, Viability theory. Birkhäuser Boston Inc., Boston, MA (1991). | MR | Zbl

[3] J.P. Aubin and A. Cellina, Differential Inclusions. Springer-Verlag (1984). | MR | Zbl

[4] J.P. Aubin and H. Frankowska, Set-valued analysis. Birkhäuser (1990). | MR | Zbl

[5] C.I. Byrnes and A. Isidori, New results and examples in nonlinear feedback stabilization. Systems Control Lett. 12 (1989) 437-442. | MR | Zbl

[6] F.H. Clarke, Yu.S. Ledyaev, L. Rifford and R.J. Stern, Feedback stabilization and Lyapunov functions. SIAM J. Control Optim. 39 (2000) 25-48. | MR | Zbl

[7] F.H. Clarke, Optimization and Nonsmooth Analysis. Wiley-Interscience, New York (1983). Republished as Classics Appl. Math. 5 (1990). | MR | Zbl

[8] F.H. Clarke, Yu.S. Ledyaev and R.J. Stern, Asymptotic stability and smooth Lyapunov functions. J. Differential Equations 149 (1998) 69-114. | MR | Zbl

[9] F.H. Clarke, Yu.S. Ledyaev, R.J. Stern and P.R. Wolenski, Nonsmooth Analysis and Control Theory. Springer-Verlag, New York, Grad. Texts in Math. 178 (1998). | MR | Zbl

[10] J.-M. Coron, On the stabilization of some nonlinear control systems: Results, tools, and applications, in Nonlinear analysis, differential equations and control (Montreal, QC, 1998). Kluwer Acad. Publ., Dordrecht (1999) 307-367. | MR | Zbl

[11] J.-M. Coron, Some open problems in control theory, in Differential geometry and control (Boulder, CO, 1997). Providence, RI, Amer. Math. Soc. (1999) 149-162. | MR | Zbl

[12] J.-M. Coron and L. Rosier, A relation between continuous time-varying and discontinuous feedback stabilization. J. Math. Systems Estim. Control 4 (1994) 67-84. | MR | Zbl

[13] K. Deimling, Multivalued Differential Equations. de Gruyter, Berlin (1992). | MR | Zbl

[14] A.F. Filippov, Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publishers (1988). | MR | Zbl

[15] R. Freeman and P.V. Kokotovic, Robust Nonlinear Control Design. State-Space and Lyapunov Techniques. Birkhäuser (1996). | MR | Zbl

[16] R.A. Freeman and P.V. Kokotovic, Backstepping design with nonsmooth nonlinearities, in Proc. of the IFAC Nonlinear Control Systems design symposium. Tahoe City, California (1995).

[17] O. Hájek, Discontinuous differential equations. I, II. J. Differential Equations 32 (1979) 149-170, 171-185. | MR | Zbl

[18] J.-B. Hiriart-Urruty and C. Imbert, Les fonctions d'appui de la jacobienne généralisée de Clarke et de son enveloppe plénière. C. R. Acad. Sci. Paris Sér. I Math. 326 (1998) 1275-1278. | Zbl

[19] N.N. Krasovskiĭ, Stability of motion. Applications of Lyapunov's second method to differential systems and equations with delay. Stanford University Press, Stanford, California (1963). Translated by J.L. Brenner. | Zbl

[20] J. Kurzweil, On the inversion of Lyapunov's second theorem on stability of motion. Amer. Math. Soc. Transl. Ser. 2 24 (1956) 19-77. | Zbl

[21] Yu.S. Ledyaev and E.D. Sontag, A Lyapunov characterization of robust stabilization. Nonlinear Anal. 37 (1999) 813-840. | MR | Zbl

[22] Y. Lin, E.D. Sontag and Y. Wang, A smooth converse Lyapunov theorem for robust stability. SIAM J. Control Optim. 34 (1996) 124-160. | MR | Zbl

[23] J.L. Massera, Contributions to stability theory. Ann. of Math. (2) 64 (1956) 182-206. | MR | Zbl

[24] E. Michael, Continuous selections. I. Ann. of Math. (2) 63 (1956) 361-382. | MR | Zbl

[25] L. Praly and A.R. Teel, On assigning the derivative of a disturbance attenuation clf, in Proc. of the 37th IEEE conference on decision and control. Tampa, Florida (1998).

[26] L. Rifford, Existence of Lipschitz and semiconcave control-Lyapunov functions. SIAM J. Control Optim. 39 (2000) 1043-1064. | MR | Zbl

[27] L. Rosier, Étude de quelques problèmes de stabilisation, Ph.D. Thesis. ENS de Cachan (1993).

[28] E.D. Sontag, A “universal” construction of Artstein's theorem on nonlinear stabilization. Systems Control Lett. 13 (1989) 117-123. | Zbl

[29] E.D. Sontag, Mathematical Control Theory. Springer-Verlag, New York, Texts Appl. Math. 6 (1990) (Second Edition, 1998). | MR | Zbl

[30] E.D. Sontag, Stability and stabilization: Discontinuities and the effect of disturbances, in Nonlinear analysis, differential equations and control (Montreal, QC, 1998). Kluwer Acad. Publ., Dordrecht (1999) 551-598. | MR | Zbl

[31] A.R. Teel and L. Praly, A smooth Lyapunov function from a class-𝒦 estimate involving two positive semidefinite functions. ESAIM: COCV 5 (2000) 313-367. | Numdam | MR | Zbl

[32] J. Tsinias, A Lyapunov description of stability in control systems. Nonlinear Anal. 13 (1989) 3-74. | MR | Zbl

[33] J. Tsinias, Sufficient Lyapunov-like conditions for stabilization. Math. Control Signals Systems 2 (1989) 343-357. | MR | Zbl

[34] J. Tsinias, A local stabilization theorem for interconnected systems. Systems Control Lett. 18 (1992) 429-434. | MR | Zbl

[35] J. Tsinias, An extension of Artstein's theorem on stabilization by using ordinary feedback integrators. Systems Control Lett. 20 (1993) 141-148. | Zbl