In this paper we consider second order evolution equations with unbounded feedbacks. Under a regularity assumption we show that observability properties for the undamped problem imply decay estimates for the damped problem. We consider both uniform and non uniform decay properties.
Keywords: stabilization, observability inequality, second order evolution equations, unbounded feedbacks
@article{COCV_2001__6__361_0,
author = {Ammari, Kais and Tucsnak, Marius},
title = {Stabilization of second order evolution equations by a class of unbounded feedbacks},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {361--386},
year = {2001},
publisher = {EDP Sciences},
volume = {6},
mrnumber = {1836048},
zbl = {0992.93039},
language = {en},
url = {https://www.numdam.org/item/COCV_2001__6__361_0/}
}
TY - JOUR AU - Ammari, Kais AU - Tucsnak, Marius TI - Stabilization of second order evolution equations by a class of unbounded feedbacks JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2001 SP - 361 EP - 386 VL - 6 PB - EDP Sciences UR - https://www.numdam.org/item/COCV_2001__6__361_0/ LA - en ID - COCV_2001__6__361_0 ER -
%0 Journal Article %A Ammari, Kais %A Tucsnak, Marius %T Stabilization of second order evolution equations by a class of unbounded feedbacks %J ESAIM: Control, Optimisation and Calculus of Variations %D 2001 %P 361-386 %V 6 %I EDP Sciences %U https://www.numdam.org/item/COCV_2001__6__361_0/ %G en %F COCV_2001__6__361_0
Ammari, Kais; Tucsnak, Marius. Stabilization of second order evolution equations by a class of unbounded feedbacks. ESAIM: Control, Optimisation and Calculus of Variations, Tome 6 (2001), pp. 361-386. https://www.numdam.org/item/COCV_2001__6__361_0/
[1] and, Stabilization of Bernoulli-Euler beams by means of a pointwise feedback force. SIAM. J. Control Optim. 39 (2000) 1160-1181. | Zbl
[2] , and, Optimal location of the actuator for the pointwise stabilization of a string. C. R. Acad. Sci. Paris Sér. I Math. 330 (2000) 275-280. | Zbl | MR
[3] , and, A model for harmonics on stringed instruments. Arch. Rational Mech. Anal. 79 (1982) 267-290. | Zbl | MR
[4] ,,, and, Stabilisation de l'équation des ondes au moyen d'un feedback portant sur la condition aux limites de Dirichlet. Asymptot. Anal. 4 (1991) 285-291. | Zbl
[5] , and, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim. 30 (1992) 1024-1065. | Zbl | MR
[6] ,, and, Representation and control of infinite Dimensional Systems, Vol. I. Birkhauser (1992). | Zbl | MR
[7] , An introduction to Diophantine Approximation. Cambridge University Press, Cambridge (1966). | Zbl
[8] , Introduction to the theory and application of the Laplace transformation. Springer, Berlin (1974). | Zbl | MR
[9] , Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps. Portugal Math. 46 (1989) 245-258. | Zbl | MR | EuDML
[10] , Some trigonometrical inequalities with applications in the theory of series. Math. Z. 41 (1936) 367-369. | Zbl | MR
[11] , and, Singular internal stabilization of the wave equation. J. Differential Equations 145 (1998) 184-215. | Zbl | MR
[12] , Rapid boundary stabilization of linear distributed systems. SIAM J. Control Optim. 35 (1997) 1591-1613. | Zbl | MR
[13] and, A direct method for the boundary stabilization of the wave equation. J. Math. Pures Appl. 69 (1990) 33-54. | Zbl | MR
[14] , Boundary stabilization of thin plates. Philadelphia, SIAM Stud. Appl. Math. (1989). | Zbl | MR
[15] , Introduction to diophantine approximations. Addison Wesley, New York (1966). | Zbl | MR
[16] , Contrôlabilité exacte des systèmes distribués. Masson, Paris (1998). | MR
[17] and, Problèmes aux limites non homogènes et applications, Vol. 1. Dunod, Paris (1968). | Zbl | MR
[18] , Asymptotic and Special Functions. Academic Press, New York. | Zbl
[19] , Semigroups of linear operators and applications to partial differential equations. Springer, New York (1983). | Zbl | MR
[20] , Exponential stability of beams with dissipative joints: A frequency approach. SIAM J. Control Optim. 33 (1995) 1-28. | Zbl | MR
[21] , Fonction de coût et contrôle des solutions des équations hyperboliques. Asymptot. Anal. 10 (1995) 95-115. | Zbl | MR
[22] , Decay rates for weakly damped systems in Hilbert space obtained with control theoretic methods. J. Differential Equations 19 (1975) 344-370. | Zbl | MR
[23] , Controllability and stabilizability theory for linear partial differential equations: Recent and open questions. SIAM Rev. 20 (1978) 639-739. | Zbl | MR
[24] , Interpolation theory, function spaces, differential operators. North Holland, Amsterdam (1978). | Zbl | MR
[25] , Regularity and exact controllability for a beam with piezoelectric actuator. SIAM J. Control Optim. 34 (1996) 922-930. | Zbl | MR
[26] and, How to get a conservative well posed linear system out of thin air. Preprint.
[27] , A treatise on the theory of Bessel functions. Cambridge University Press. | Zbl | MR | JFM
[28] , Regular linear systems with feedback. Math. Control Signals Systems 7 (1994) 23-57. | Zbl | MR






