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STABILIZATION OF SECOND ORDER EVOLUTION EQUATIONS
BY A CLASS OF UNBOUNDED FEEDBACKS
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Abstract. In this paper we consider second order evolution equations with unbounded feedbacks.
Under a regularity assumption we show that observability properties for the undamped problem imply
decay estimates for the damped problem. We consider both uniform and non uniform decay properties.
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1. Introduction

In recent years an important literature was devoted to the controllability and stabilizability of second order
infinite dimensional systems comming from elasticity (see for instance Lions [16] and references therein). Ac-
cording to the classical principle of Russell (see [23]) if a system is uniformly stabilizable by using colocated
actuators and sensors then it is exactly controllable by using the same actuators (i.e., the same input oper-
ator). As far as we know the converse of this assertion was not proved in a general framework. The only
result available in the literature supposes that the input operator is bounded (see Haraux [9]) in the energy
space or they are based on non local feed-backs (see for instance Komornik [12] and references therein). In the
applications for PDE’s systems this situation leads to non-local feedbacks given, in particular, by Riccati type
operators. However in many PDE systems the exponential stabilizability with colocated actuators and sensors
was proved by direct methods (see Lagnese [14], Komornik and Zuazua [13]) by using multiplier techniques.
The aim of this paper is to give a class of unbounded input operators for which exact controllability implies
uniform stabilizability by colocated actuators and sensors.

More precisely, let X be a complex Hilbert space with norm and inner product denoted respectively by ||.||X
and 〈., .〉X . Let A be a linear unbounded self-adjoint and strictly positive operator in X . Let D(A

1
2 ) be the

domain of A
1
2 . Denote by (D(A

1
2 ))′ the dual space of D(A

1
2 ) obtained by means of the inner product in X .

Further, let U be a complex Hilbert space (which will be identified to its dual space) with norm and inner
product respectively denoted by ||.||U and 〈., .〉U and let B ∈ L(U, (D(A

1
2 ))′).

Most of the linear control problems comming from elasticity can be written as{
x′′(t) +Ax(t) +Bu(t) = 0,
x(0) = z0, x′(0) = z1,

(1.1)
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where x : [0, T ] → X is the state of the system, u ∈ L2(0, T ;U) is the input function and we denoted the
differentiation with respect to time by “′”.

We define the energy of x(t) at instant t by

E(x(t)) =
1
2

{
||x′(t)||2X + ||A 1

2x(t)||2X
}
·

Simple formal calculations give

E(x(0)) −E(x(t)) = −〈Bu(t), x′(t)〉
D(A

1
2 ),(D(A

1
2 ))′

, ∀ t ≥ 0. (1.2)

This is why, in many problems, coming in particular from elasticity, the input u is given in the feedback form
u(t) = B∗x′(t), which obviously gives a nonincreasing energy and which corresponds to colocated actuators and
sensors. The aim of this paper is to give sufficient conditions making the corresponding closed loop system

x′′(t) +Ax(t) +BB∗x′(t) = 0, (1.3)

x(0) = x0, x′(0) = x1, (1.4)

uniformly stable in the energy space D(A
1
2 )×X. In the case of non uniform stability we give sufficient conditions

for weaker decay properties.
In order to obtain the characterization of decay properties of the damped problem via observability inequali-

ties for the conservative problem we will use the assumption below. This assumption is less restrictive than the
boundedness of B which was the basic hypothesis in [9].

(H)
If β > 0 is fixed and Cβ =

{
λ ∈ C |Reλ = β

}
, the function

λ ∈ C+ =
{
λ ∈ C |Reλ > 0

}
→ H(λ) = λB∗(λ2I +A)−1B ∈ L(U) (1.5)

is bounded on Cβ .
An equivalent statement of (H) is given at Section 3. Under this alternative form this assumption can be

verified for PDE systems (such as the systems in the examples below), by proving results called (in the PDE
community) “hidden regularity results”.

The main novelties brought in by this paper are the following:

(a) we give a sufficient and necessary condition for the exponential stability of all finite energy solutions
of (1.3, 1.4) by using only the undamped problem (i.e. corresponding to B = 0 in (1.3));

(b) in the case of non exponential stability in the energy space we give an explicit decay rate for all initial
data lying in a more regular space.

Our approach has common points with the result obtained in [9] for feedbacks which are bounded in the energy
space. The main difference is that we replace the assumption of boundedness of B by the assumption (H).
Moreover our methods are related to those proposed in [28] for a general class of first order systems (see the
comming paper [26] for a description of the connections between our results and those in [28]).

The paper is organized as follows. In the second section we give precise statements of the main results. Some
regularity results implied by (H) are given in Section 3. Section 4 contains the proof of the main results. The
last section is devoted to some applications.
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2. Statement of the main results

Let x(t) be a solution of (1.3, 1.4). Simple formal calculations show that a sufficiently smooth solution
of (1.3, 1.4) satisfies the energy estimate

E(x(0)) −E(x(t)) =
∫ t

0

||B∗x′(s)||2Uds, ∀ t ≥ 0. (2.1)

In particular (2.1) implies that
E(x(t)) ≤ E(x(0)), ∀t ≥ 0.

Estimate above suggests that the natural well-posedness space for (1.3, 1.4) is V ×X where V = D(A
1
2 ) and

||x||V = ||A 1
2x||X ,∀x ∈ V .

The existence and uniqueness of finite energy solutions of (1.3, 1.4) can be obtained by standard semigroup
methods. This why the results below are given without proofs.

Proposition 2.1. Suppose that (x0, x1) ∈ V ×X. Then the problem (1.3, 1.4) admits a unique solution

x(t) ∈ C(0, T ;V ) ∩C1(0, T ;X)

such that B∗x(.) ∈ H1(0, T ;U) and

‖(B∗x)′(·)‖2L2(0,T ;U) ≤ C‖(x0, x1)‖2V×X , (2.2)

where the constant C > 0 is independent of (x0, x1). Moreover x(t) satisfies the energy estimate (2.1).

Let us now consider the problem

φ′′(t) +Aφ(t) = 0, (2.3)

φ(0) = x0, φ′(0) = x1. (2.4)

It is well known that (2.3, 2.4) is well-posed in D(A) × V and in V ×X .
The following theorem is a direct generalisation of the result in [9].

Theorem 2.2. Assume that the hypothesis (H) is verified. Then, the system described by (1.3, 1.4) is expo-
nentially stable in V ×X if and only if there exists T > 0, C > 0 such that∫ T

0

||(B∗φ)′(t)||2U dt ≥ C ||(x0, x1)||2V×X , ∀(x0, x1) ∈ D(A) × V. (2.5)

Remark 2.3. Assumption (H) is not necessary for the implication: uniform exponential stability⇒ (2.5). The
latter follows from (indirectly) Russell’s principle [23].

The statement of our second main result requires some notations.
Consider the unbounded linear operator

Ad : D(Ad)→ V ×X, Ad =
(

0 I
−A −BB∗

)
, (2.6)

where

D(Ad) =
{

(u, v) ∈ V ×X, Au+BB∗v ∈ X, v ∈ V
}
·
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Let X1, X2, Y1, Y2 be four Banach spaces such that

V ×X ⊂ X1 ×X2, D(Ad) ⊂ Y1 × Y2 ⊂ V ×X,

∀ z ∈ D(Ad), ||z||D(Ad) ∼ ||z||Y1×Y2

and

[Y1 × Y2, X1 ×X2]θ = V ×X, (2.7)

for a fixed real number θ ∈ ]0, 1[, where [., .]θ denotes the interpolation space (see for instance Triebel [24]).
Let G : R+ → R+ such that G is continuous, invertible, increasing on R+ and suppose that the function

x→ 1

x
θ

1−θ
G(x) increasing on (0, 1).

In the case of non exponential decay in the energy space we give explicit decay estimates valid for regular
initial data, as stated in the result below:

Theorem 2.4. Assume that assumption (H) is verified and that the function G satisfies assumptions above.
Then the following assertions hold true:

1. If for all (x0, x1) ∈ D(A) × V we have∫ T

0

||(B∗φ)′(t)||2U dt ≥ C ||(x0, x1)||2V×X G
( ||(x0, x1)||2X1×X2

||(x0, x1)||2V×X

)
, (2.8)

for some constant C > 0 then there exists a constant C1 > 0 such that for all t > 0 and for all (x0, x1)
∈ D(Ad) we have

E(x(t)) ≤ C1

[
G−1

(
1

1 + t

)] θ
1−θ

||(x0, x1)||2D(Ad). (2.9)

2. If for all (x0, x1) ∈ D(A) × V we have∫ T

0

||(B∗φ)′(t)||2U dt ≥ C ||(x0, x1)||2X1×X2
, (2.10)

for some constant C > 0 then there exists a constant C2 > 0 such that for all t > 0 and for all (x0, x1)
∈ D(Ad) we have

E(x(t)) ≤ C2

(1 + t)
θ

1−θ
||(x0, x1)||2D(Ad). (2.11)

Remark 2.5. 1. Estimates similar to (2.11) were first given by Russell [22] in the case of bounded feedback
controls. Russell’s method cannot be directly extended to unbounded feedbacks.

2. If θ ∈ (0, 1
2 ) then the identity function satisfies the assumptions on G in Theorem 2.4. In this case (2.11)

is a consequence of (2.9). However if θ ∈ (1
2 , 1) then the identity function does not satisfy the assumptions

on G in the Theorem 2.4. In this second case (2.11) is not a consequence of (2.9).
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3. Some regularity results

Consider the evolution problem

y′′(t) +Ay(t) = Bv(t), (3.1)

y(0) = y′(0) = 0. (3.2)

A natural question is the regularity of y when v ∈ L2(0, T ;U). By applying standard energy estimates we can
easily check that y ∈ C(0, T ;X)∩C1(0, T ;V ′). However if B satisfies a certain admissibility condition then y is
more regular. More precisley the following result, which is a version of the general transposition method (see,
for instance, Lions and Magenes [17]), holds true.

Lemma 3.1. Suppose that v ∈ L2(0, T ;U) and that the solutions φ of (2.3, 2.4) are such that B∗φ(.)
∈ H1(0, T ;U) and there exists a constant C > 0 such that

‖(B∗φ)′(·)‖L2(0,T ;U) ≤ C‖(x0, x1)‖V×X , ∀ (x0, x1) ∈ V ×X. (3.3)

Then the problem (3.1, 3.2) admits a unique solution having the regularity

y ∈ C(0, T ;V ) ∩ C1(0, T ;X). (3.4)

Proof. Let

D(A) = D(A)× V

and denote by [D(A)]′ the dual space of D(A) with respect to the pivot space V ×X .

If we put Z =
(
y
y′

)
it is clear that (3.1, 3.2) can be written as

Z ′ +AZ(t) = Bv(t), Z(0) = 0,

where

A =
(

0 −I
A 0

)
: V ×X → [D(A)]′,

B =
(

0
B

)
: U → [D(A)]′.

It well known that A is a skew adjoint operator so it generates a group of isometries in [D(A)]′, denoted by S(t).
After simple calculations we get that the operator B∗ : D(A)→ U is given by

B∗
(
u
v

)
= B∗v, ∀ (u, v) ∈ D(A).

This implies that

B∗S∗(t)
(
x0

x1

)
= B∗φ′, ∀ (x0, x1) ∈ D(A),



366 K. AMMARI AND M. TUCSNAK

with φ satisfying (2.3, 2.4). From the inequality above and (3.3) we deduce that there exists a constant C > 0
such that ∫ T

0

∣∣∣∣∣∣∣∣B∗S∗(t)( x0

x1

)∣∣∣∣∣∣∣∣2
U

dt ≤ C ||(x0, x1)||2V×X , ∀ (x0, x1) ∈ D(A).

According to Theorem 3.1 in [6] (p. 187) the inequality above implies the interior regularity (3.5).

Proposition 3.2. Suppose that v ∈ L2(0, T ;U) and that the problem (3.1, 3.2) admits a unique solution having
the regularity

y ∈ C(0, T ;V ) ∩ C1(0, T ;X). (3.5)

Then hypothesis (H) holds if and only if B∗y(.) ∈ H1(0, T ;U) and there exists a constant C > 0 such that

‖(B∗y)′(·)‖L2(0,T ;U) ≤ C‖v‖L2(0,T ;U), ∀ v ∈ L2(0, T ;U). (3.6)

Proof. As equation (3.1) is time reversible, after extending v by zero for t ∈ R \ [0, T ], we can solve (3.1, 3.2),
for t ∈ R. By this way, we obtain a function, denoted also by y, such that

y ∈ C(R;V ) ∩ C1(R;X) ∩ L2(R;V ),
y(t) = 0, ∀ t ≤ 0, (3.7)

and y satisfies (3.1, 3.2) for all t ∈ R.
Let ŷ(λ), where λ = γ + iη, γ > 0 and η ∈ R, be the Laplace (with respect to t) transform of y. Since y

satisfies (3.7), estimate (3.6) is equivalent to the fact that the function t → e− γ tB∗y(t) belongs to H1(R;U)
and that there exists a constant M1 > 0 such that

‖e− γ .B∗y(·)‖2H1(R;U) ≤M1‖v(·)‖2L2(R;U).

Equivalently, by the Parseval identity (see for instance Doetsch [8], p. 212), it suffices to prove that the function

η → (γ + iη)B∗ŷ(γ + iη)

belongs to L2(Rη;U), for some γ > 0, and that there exists a constant M2 > 0 such that

‖(γ + iη)B∗ŷ(γ + iη)‖2L2(Rη;U) ≤M2

∫ +∞

−∞
||v̂(γ + iη)||2Udη. (3.8)

It can be easily checked that ŷ satisfies:

λ2ŷ(λ) +Aŷ(λ) = Bv̂(λ), ∀Reλ > 0. (3.9)

Relation above implies, for Reλ > 0 that

λB∗ŷ(λ) = H(λ)v̂(λ), ∀Reλ > 0, (3.10)

where H(λ) is defined in (1.5). Assumption (H) implies the existence of a constant M2 > 0 such that (3.8)
holds true. This ends the proof of the fact that assumption (H) implies that (3.6) holds for all finite energy
solution of (3.1, 3.2).
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Suppose now that (3.6) holds true. By using the time reversibility and the invariance with respect to
translations (in time) of (3.1) we obtain that (3.1, 3.2) is well posed for all input v ∈ L2(R, U), v compactly
supported. More precisely, we have∫

supp(v)

||(B∗y)′(t)||2U dt ≤ C
∫

supp(v)

||v(t)||2U dt,

for all compactly supported v ∈ L2(R, U), with the same constant as in (3.6).
Using (3.10) it follows that

||H(γ + iη)v̂(γ + iη)||2L2(Rη ,U) ≤ C ||v̂(λ)||2L2(Rη,U), (3.11)

for all compactly supported v ∈ L2(R, U).
By density it follows that (3.11) holds for all v ∈ L2(R, U). We have thus proved that (3.6) implies that (H)

holds true.

Proposition 3.3. Suppose that hypothesis (H) is satisfied. Then for (x0, x1) ∈ V × X we have that B∗φ(.)
∈ H1(0, T ;U) and there exist C, T > 0 such that the solution φ(t) of (2.3, 2.4) satisfies (3.3). In the other
words assumption (H) implies (3.3).

Proof. Suppose that hypothesis (H) is satisfied. Let x(t) ∈ C(0, T ;V ) ∩ C1(0, T ;X) be the unique solution
of (1.3, 1.4). By Proposition 2.1 we know that B∗x ∈ H1(0, T ;U) and that (2.1) holds true. Let φ be the
solution of (2.3, 2.4). We clearly have ψ = x− φ ∈ C(0, T ;V ) ∩C1(0, T ;X) and ψ satisfies{

ψ′′(t) +Aψ(t) = BB∗x′(t), inC(0, T ;V ′),
ψ(0) = ψ′(0) = 0.

By applying now Proposition 3.2 with v = B∗x′ ∈ L2(0, T ;U) we obtain that∫ T

0

||(B∗ψ)′(t)||2U dt ≤ C
∫ T

0

||(B∗x)′(t)||2U dt. (3.12)

Since B∗φ = B∗x−B∗ψ relations (2.1) and (3.12) imply the conclusion of the proposition.

Corollary 3.4. Suppose that assumption (H) is satisfied. Then, for all v ∈ L2(0, T ;U), problem (3.1, 3.2)
admits a unique solution y satisfying (3.5) and (3.6).

Proof. Suppose that assumption (H) is satisfied. Then Proposition 3.3 and Lemma 3.1 imply that problem (3.1,
3.2) admits a unique solution y satisfying (3.5). Finally Proposition 3.2 implies that y satisfies (3.6). �

4. Proof of the main results

Let x(t) ∈ C(0, T ;V ) ∩ C1(0, T ;X) be the solution of (1.3, 1.4). Then x(t) can be written as

x(t) = φ(t) + ψ(t), (4.1)

where φ(t) satisfies (2.3, 2.4) and ψ(t) satisfies

ψ′′(t) +Aψ(t) = −BB∗x′(t), (4.2)

ψ(0) = ψ′(0) = 0. (4.3)
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The main ingredient of the proof of Theorem 2.2 and of the proof of Theorem 2.4 is the following result:

Lemma 4.1. Let (x0, x1) ∈ V ×X and suppose that (H) is verified. Then the solution x(t) of (1.3, 1.4) and
the solution φ(t) of (2.3, 2.4) satisfy

C1

∫ T

0

||(B∗φ)′(t)||2Udt ≤
∫ T

0

||(B∗x)′(t)||2Udt ≤ 4
∫ T

0

||(B∗φ)′(t)||2Udt, (4.4)

where C1 > 0 is a constant independent of (x0, x1).

Remark 4.2. By Proposition 2.1, (B∗x)′(·) ∈ L2(0, T ;U). So, equation (4.2) makes sense. The result above
shows that the L2 norm of ||(B∗x)′(·)||U is equivalent to the L2 norm of ||(B∗φ)′(·)||U (notice that ||(B∗φ)′(·)||U
∈ L2(0, T ) by Prop. 3.3).

Proof of Lemma 4.1. We prove (4.4) for x(t) satisfying (1.3, 1.4) and φ(t) solution of (2.3, 2.4).
Relation (4.1) implies that∫ T

0

||(B∗φ)′(·)||2Udt ≤ 2

{∫ T

0

||(B∗x)′(·)||2Udt+
∫ T

0

||(B∗ψ)′(·)||2Udt

}
·

Estimate above combined with inequality (3.6) in Proposition 3.2 implies the existence of a constant C1 > 0,
independent of (x0, x1), such that

C1

∫ T

0

||(B∗φ)′(·)||2Udt ≤
∫ T

0

||(B∗x)′(·)||2Udt. (4.5)

On the other hand, according to Remark 4.2 and to relation (4.1) we have that

||(B∗φ)′(·)||U ∈ L2(0, T ).

This means that (4.2) can be rewritten as

ψ′′(t) +Aψ(t) +B(B∗ψ)′(t) = −B(B∗φ)′(t). (4.6)

We denote now by w(t) the extension of (B∗φ)′ obtained by defining w(t) = 0, t ∈ R \ [0, T ]. We still denote
by ψ(t) the solution of {

ψ′′(t) +Aψ(t) +B(B∗ψ)′ = −Bw(t), t ∈ R,
ψ(0) = ψ′(0) = 0. (4.7)

We clearly have ψ(t) = 0 for t ∈ R \ [0, T ].
Taking the Laplace transform we get

λ2 ψ̂(λ) +Aψ̂(λ) + λBB∗ψ̂(λ) = −Bŵ(λ), ∀λ = γ + iη, γ > 0.

The equality above holds in (D(A
1
2 ))′.

By applying λ̄ ¯̂
ψ ∈ D(A

1
2 ) to the equality above, we get

λ |λ|2 ||ψ̂(λ)||2X + λ̄ ||A 1
2 ψ̂(λ)||2X + ||λB∗ψ̂(λ)||2U = −〈w(λ), λ̄ B∗ ¯̂

ψ(λ)〉U .

Taking the real part of each term, we get∫
Rη
||λB∗ψ̂(λ)||2U dη ≤ 1

2

∫
Rη
||ŵ(λ)||2U dη +

1
2

∫
Rη
||λB∗ψ̂(λ)||2U dη.



STABILIZATION OF SECOND ORDER EVOLUTION EQUATIONS 369

Parseval identity implies

‖(B∗ψ)′(t)‖2L2(0,T ;U) ≤ ‖(B∗φ)′(t)‖2L2(0,T ;U) . (4.8)

Relation (4.1) and inequality above imply that

‖(B∗x)′(t)‖2L2(0,T ;U) ≤ 4 ‖(B∗φ)′(t)‖2L2(0,T ;U) . (4.9)

Inequalities (4.5) and (4.9) obviously yield the conclusion (4.4).
We can now prove the first main result.

Proof of Theorem 2.2. All finite energy solutions of (1.3, 1.4) satisfy the estimate

E(x(t)) ≤Me−ωtE(x(0)), ∀ t ≥ 0, (4.10)

where M,ω > 0 are constants independent of (x0, x1), if and only if there exist a time T > 0 and a constant
C > 0 (depending on T ) such that

E(x(0)) −E(x(T )) ≥ CE(x(0)), ∀ (x0, x1) ∈ V ×X.

By (2.1) relation above is equivalent to the inequality∫ T

0

||(B∗x)′(s)||2Uds ≥ CE(x(0)), ∀ (x0, x1) ∈ V ×X.

From Lemma 4.1 it follows that the system (1.3, 1.4) is exponentially stable if and only if∫ T

0

||(B∗φ)′(s)||2Uds ≥ CE(x(0)), ∀ (x0, x1) ∈ D(A) × V

holds true. By density it follows that (1.3, 1.4) is exponentially stable if and only if (2.5) holds true. This
ends up the proof of Theorem 2.2.

Remark 4.3. By analyzing the proof above we notice that the proof of the inequality (4.9) does not require
assumption (H). More precisely, the inequality (4.8) can be also obtained in the following direct manner:

Let (x0, x1) ∈ V ×X such that B∗φ ∈ H1(0, T ;U). Then, by formally multipying (4.7) by ψ′, it follow that
the function ψ = x− φ satisfies

||(ψ(t), ψ′(t)||2V×X +
∫ t

0

(
||B∗ψ′(s)||2U + ||B∗x′(s)||2U

)
ds =

∫ t

0

||B∗φ′(s)||2U ds.

This implies that (4.9) holds.
This means that the result mentioned in Remark 2.3 can be also established by a direct method. �

Before giving the proof of Theorem 2.4, we need a technical lemma. This lemma extends a result in Jaffard
et al. [11]. For a proof we refere to Ammari et al. [1].

Lemma 4.4. Let (Ek) be a sequence of positive real numbers satisfying

Ek+1 ≤ Ek − CE2+α
k+1 , ∀k ≥ 0, (4.11)
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where C > 0 and α > −1 are constants. Then there exists a positive constant M such that

Ek ≤
M

(k + 1)
1

1+α
, ∀k ≥ 0. (4.12)

�

Proof of Theorem 2.4. By density (2.8) implies that for all (x0, x1) ∈ V ×X we have∫ T

0

||(B∗φ)′(t)||2U dt ≥ C ||(x0, x1)||2V×X G
( ||(x0, x1)||2X1×X2

||(x0, x1)||2V×X

)
·

By applying Lemma 4.1 we obtain that the solution x(t) of (1.3, 1.4) satisfies the following inequality∫ T

0

||(B∗x)′(t)||2Udt ≥ C ||(x0, x1)||2V×X G
( ||(x0, x1)||2X1×X2

||(x0, x1)||2V×X

)
, ∀(x0, x1) ∈ V ×X.

Relation above and (2.1) imply the existence of a constant K > 0 such that

||(x(T ), x′(T ))||2V×X ≤ ||(x0, x1)||2V×X −K ||(x0, x1)||2V×X G
( ||(x0, x1)||2X1×X2

||(x0, x1)||2V×X

)
, ∀ (x0, x1) ∈ D(Ad).

(4.13)

By using (2.7) (see again [24]), we obtain for fixed θ ∈ (0, 1)

||(x0, x1)||2X1×X2

||(x0, x1)||2V×X
≥
||(x0, x1)||

2−2θ
θ

X1×X2

||(x0, x1)||
2−2θ
θ

V×X

, ∀ (x0, x1) ∈ D(Ad). (4.14)

By using (4.14) combined with the fact that the function t→ ||(x(t), x′(t))||2V×X is nonincreasing, the function G
is increasing and relation (4.22) we obtain the existence of a constant K1 > 0 such that

||(x(T ), x′(T ))||2V×X ≤ ||(x0, x1)||2V×X −K1 ||(x0, x1)||2V×X G

 ||(x(T ), x′(T ))||
2−2θ
θ

V×X

||(x0, x1)||
2−2θ
θ

Y1×Y2

 · (4.15)

Estimate (4.15) remains valid in successive intervals [kT, (k + 1)T ], so, we have

||(x((k + 1)T ), x′((k + 1)T ))||2V×X ≤ ||(x(kT ), x′(kT ))||2V×X

−K1 ||(x(kT ), x′(kT ))||2V×X G

 ||(x((k + 1)T ), x′((k + 1)T ))||
2−2θ
θ

V×X

||(x(kT ), x′(kT ))||
2−2θ
θ

Y1×Y2

 ·
Since Ad generates a semigroup of contractions in D(Ad) and the graph norm onD(Ad) is equivalent to ||.||Y1×Y2 ,
relations above imply the existence of a constant K2 > 0 such that

||(x((k + 1)T ), x′((k + 1)T ))||2V×X ≤ ||(x(kT ), x′(kT ))||2V×X
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−K2 ||(x(kT ), x′(kT ))||2V×X G

 ||(x((k + 1)T ), x′((k + 1)T ))||
2−2θ
θ

V×X

||(x0, x1)||
2−2θ
θ

D(Ad)

 ,

∀ (x0, x1) ∈ D(Ad). (4.16)

If we adopt now the notation

Ek = G

 ||(x(kT ), x′(kT ))||
2−2θ
θ

V×X

||(x0, x1)||
2−2θ
θ

D(Ad)

 , (4.17)

the inequalities (4.23) implies

||(x((k + 1)T ), x′((k + 1)T ))||2V×X
||(x(kT ), x′(kT ))||2V×X

Ek
Ek+1

Ek+1 ≤ Ek −K2 Ek Ek+1. (4.18)

Since, the function t → ||(x(t), x′(t))||2V×X is nonincreasing and the function G is increasing, relation (4.18)
implies

||(x((k + 1)T ), x′((k + 1)T ))||2V×X
||(x(kT ), x′(kT ))||2V×X

Ek
Ek+1

Ek+1 ≤ Ek −K2 E2
k+1. (4.19)

According to (4.24), relation (4.19) gives,

12
64
||(x(kT ),x′(kT ))||

2−2θ
θ

V×X

||(x0,x1)||
2−2θ
θ

D(Ad)

3
75

θ
1−θ
G
(
||(x(kT ),x′(kT ))||

2−2θ
θ

V×X

||(x0,x1)||
2−2θ
θ

D(Ad)

)

12
64
||(x((k+1)T ),x′((k+1)T ))||

2−2θ
θ

V×X

||(x0,x1)||
2−2θ
θ

D(Ad)

3
75

θ
1−θ
G
(
||(x((k+1)T ),x′((k+1)T ))||

2−2θ
θ

V×X

||(x0,x1)||
2−2θ
θ

D(Ad)

) Ek+1

≤ Ek −K2 E2
k+1. (4.20)

Relation (4.20) combined with that the function x→ 1

x
θ

1−θ
G(x) is increasing in (0, 1), gives

Ek+1 ≤ Ek −K2E2
k+1, ∀k ≥ 0. (4.21)

By applying Lemma 4.4 and using relation (4.24) we obtain the existence of a constant M > 0 such that

||(x(kT ), x′(kT ))||2V×X ≤
[
G−1

(
M

k + 1

)] θ
1−θ

||(x0, x1)||2D(Ad), ∀k ≥ 0,

which obviously implies (2.9).



372 K. AMMARI AND M. TUCSNAK

Proof of second assertion of Theorem 2.4. By density (2.10) implies that for all (x0, x1) ∈ V ×X we have∫ T

0

||(B∗φ)′(t)||2U dt ≥ C ||(x0, x1)||2X1×X2
.

Then, Lemma 4.1 combined with (2.7) and (2.1) imply the existence of a constant K > 0 such that

||(x(T ), x′(T ))||2V×X ≤ ||(x0, x1)||2V×X −K
||(x0, x1)||

2
θ

X1×X2

||(x0, x1)||
2−2θ
θ

V×X

,

∀ (x0, x1) ∈ D(Ad). (4.22)

Following the same steps as in the proof of the first assertion of Theorem 2.4 we obtain the existence of a
constant C > 0 such that for all k ≥ 0 we have

||(x((k + 1)T ), x′((k + 1)T ))||2V×X ≤ ||(x(kT ), x′(kT ))||2V×X

−C
||(x((k + 1)T ), x′((k + 1)T ))||

2
θ

V×X

||(x0, x1)||
2−2θ
θ

D(Ad)

, ∀ (x0, x1) ∈ D(Ad). (4.23)

If we adopt the notation

Hk =
||(x(kT ), x′(kT ))||2V×X
||(x0, x1)||2D(Ad)

, (4.24)

relation (4.23) gives

Hk+1 ≤ Hk − CH
1
θ

k+1, ∀k ≥ 0. (4.25)

By applying Lemma 4.4 and using relation (4.25) we obtain the existence of a constant M > 0 such that

||(x(kT ), x′(kT ))||2V×X ≤
M ||(x0, x1)||2D(Ad)

(k + 1)
θ

1−θ
, ∀k ≥ 0,

which obviously implies (2.10). �

5. Some applications

Now, we give some applications of Theorem 2.2 and Theorem 2.4. Some of them are new and some were
obtained by different methods in previous literature.

5.1. First example: Stabilization of the string

We consider the following initial and boundary problem:

(I)


∂2u

∂t2
− ∂2u

∂x2
+
∂u

∂t
(ξ, t) δξ = 0, (x, t) ∈ (0, 1)× (0,+∞),

u(0, t) = u(1, t) = 0, t ∈ (0,+∞),

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x), x ∈ (0, 1),
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where ξ ∈ (0, 1) and δξ is the Dirac mass concentrated in the point ξ ∈ (0, 1).
In this case, we have:

X = L2(0, 1), U = R, V = H1
0 (0, 1),

and

A = − d2

dx2
, D(A) = H2(0, 1) ∩H1

0 (0, 1), Bk = k δξ, ∀ k ∈ R. (5.1)

Then, Ad is given by

Ad
(
u
v

)
=

 v
d2u

dx2
− v(ξ) δξ

 ,

∀ (u, v) ∈ D(Ad) =
{

(u, v) ∈ [H1
0 (0, 1) ∩H2(0, ξ) ∩H2(ξ, 1)]×H1

0 (0, 1),
du
dx

(ξ+)− du
dx

(ξ−) = v(ξ)
}
·

Denote by Q the set of all rational numbers. Let us also denote by S the set of all numbers ρ ∈ (0, 1) such
that ρ 6∈ Q and if [0, a1, . . . , an, . . . ] is the expansion of ρ as a continued fraction, then (an) is bounded. Let
us notice that S is is obviously uncountable and, by classical results on diophantine approximation (cf. [7], p.
120), its Lebesgue measure is equal to zero. In particular, by Euler–Lagrange theorem (see Lang [15], p. 57) S
contains all ξ ∈ (0, 1) such that ξ is an irrational quadratic number (i.e. satisfying a second degree equation with
rational coefficients). According to a classical result (see for instance Tucsnak [25] and the references therein)
if ξ ∈ S then there exists a constant Cξ > 0 such that

| sin (nπξ)| ≥ Cξ
n
, ∀ n ≥ 1. (5.2)

Stability results for (I) are then an immediate consequence of Theorem 2.2 and Theorem 2.4. We have the
following result:

Theorem 5.1. 1. For any ξ ∈ (0, 1) the system described by (I) is not exponentially stable in V × L2(0, 1).

2. For all ξ ∈ S and for all t ≥ 0 we have∣∣∣∣∣∣∣∣(u(t),
∂u

∂t
(t))
∣∣∣∣∣∣∣∣2
V×L2(0,1)

≤ Cξ
t+ 1

||(u0, u1)||2D(Ad),

∀ (u0, u1) ∈ D(Ad), (5.3)

where Cξ > 0 is a constant depending only on ξ.

3. If ε > 0 then, for almost all ξ ∈ (0, 1) and for all t ≥ 0 we have∣∣∣∣∣∣∣∣(u(t),
∂u

∂t
(t))
∣∣∣∣∣∣∣∣2
V×L2(0,1)

≤ Cξ,ε

(t+ 1)
1

1+ε
||(u0, u1)||2D(Ad),
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∀ (u0, u1) ∈ D(Ad), (5.4)

where Cξ,ε > 0 is a constant depending only on ξ and ε.

Remark 5.2. The first assertion of the theorem above was proved by a different method in Bamberger et al. [3].

In this case the problem (2.3, 2.4) becomes

∂2φ

∂t2
− ∂2φ

∂x2
= 0, (0, 1)× (0,+∞), (5.5)

φ(0, t) = φ(1, t) = 0, (0,+∞), (5.6)

φ(x, 0) = u0(x),
∂φ

∂t
(x, 0) = u1(x), (0, 1). (5.7)

Lemma 5.3. The operators A and B defined by (5.1) satisfy assumption (H).

Proof. Let k ∈ R. It can be easily cheked that v = (λ2 +A)−1Bk satisfies:

λ2 v(x) − d2v

dx2
(x) = 0, x ∈ (0, ξ) ∪ (ξ, 1), Reλ > 0, (5.8)

v(0) = v(1) = 0, (5.9)

[v]ξ = 0,
[

dv
dx

]
ξ

= k, (5.10)

where we denote by [g] the jump of the function g at the point ξ.
The solutions of (5.8, 5.9) have the form

v(x) =
{
A sh(λx), x ∈ (0, ξ),
B sh[λ(x− 1)], x ∈ (ξ, 1),

where A,B are constants.
Consequently, the solutions of (5.8–5.10) have the following form

v(x) =


1
λ

sh[λ(ξ − 1)] sh(λx)
sh(λ)

k, x ∈ (0, ξ),

1
λ

sh(λξ) sh[λ(x− 1)]
sh(λ)

k, x ∈ (ξ, 1).

Then, the function H(λ) = λB∗(λ2 +A)−1B associated to problem (I) is given by the following expression

H(λ) =
sh(λξ) sh[λ(ξ − 1)]

sh(λ)
, Reλ > 0.
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We easily check that

sup
λ∈Cβ

|H(λ)| ≤ ch(βξ) ch[β(ξ − 1)]
sh(β)

·

Thus (H) is satisfied.
The observability inequality concerning the trace at the point x = ξ of the solutions of (5.5–5.7) is given in

the proposition below.

Proposition 5.4. Let T > 0 be fixed. Then the following assertions hold true.

1. For all ξ ∈ S the solution φ of (5.5–5.7) satisfies∫ T

0

[
∂φ

∂t
(ξ, t)

]2

dt ≥ Cξ
(
‖u0‖2L2(0,1) + ‖u1‖2H−1(0,1)

)
,

∀(u0, u1) ∈ V × L2(0, 1), (5.11)

where Cξ > 0 is a constant depending only on ξ.

2. For all ε > 0 and for almost all ξ ∈ (0, 1) the solution φ of (5.5–5.7) satisfies∫ T

0

[
∂φ

∂t
(ξ, t)

]2

dt ≥ Cξ,ε
(
‖u0‖2H−ε(0,1) + ‖u1‖2H−1−ε(0,1)

)
,

∀(u0, u1) ∈ V × L2(0, 1), (5.12)

where Cξ,ε > 0 is a constant depending only on ξ and ε.

3. The result in assertion 1 is sharp in the sense that, for all ξ ∈ (0, 1), there exists a sequence (u0
m, u

1
m)

⊂ V × L2(0, 1) such that the corresponding sequence of solutions (φm) of (5.5–5.7) with initial data
(u0
m, u

1
m) satisfies

lim
m→∞

∫ T
0

[
∂φ
∂t (ξ, t)

]2
dt

‖u0‖2Hε(0,1) + ‖u1‖2H−1+ε(0,1)

= 0. (5.13)

Proof. If we put

u0(x) =
∞∑
n=1

an sin(nπx), u1(x) =
∞∑
n=1

nbn sin(nπx) (5.14)

with
(nan), (nbn) ⊂ l2(R),

then we clearly have

∂φ

∂t
(ξ, t) =

∑
n≥1

(
− nπan sin(nπt) sin(nπξ) + nπbn cos(nπt) sin(nπξ)

)
. (5.15)
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From Ingham’s inequality (see Ingham [10]) we obtain, for all T > 2, the existence of a constant CT > 0 such
that the solution φ of (5.5–5.7) satisfies

∫ T

0

[
∂φ

∂t
(ξ, t)

]2

dt ≥ CT
∑
n≥1

n2(a2
n + b2n) |sin (nπξ)|2 . (5.16)

Relations (5.16) and (5.2) imply the existence of a constant KT,ξ > 0 such that

∫ T

0

[
∂φ

∂t
(ξ, t)

]2

dt ≥ KT,ξ

∞∑
n=0

[
a2
n + b2n

]
, ∀ ξ ∈ S,

which is exactly (5.11).
In order to prove (5.12) we use a well-known result asserting that, for all ε > 0 there exists a set Bε ⊂ (0, 1)

having the Lebesgue measure equal to 1 and a constant C > 0, such that for any, ρ ∈ Bε,

| sin (nπρ)| ≥ C

n1+ε
, ∀ n ≥ 1. (5.17)

Let us notice that by Roth’s theorem Bε contains all numbers in (0, 1) having the property that ξ is an algebraic
irrational (see Cassals [7] for details). Inequalities (5.16) and (5.17) obviously imply (5.12).

We still have to show the existence of a sequence satisfying (5.13). By using continous fractions (see again [25]
and references therein for details) we construct a sequence (qm) ⊂ N such that qm →∞ and

| sin (qmπξ)| ≤
π

qm
,∀m ≥ 1. (5.18)

Using (5.15) and (5.47) a simple calculation shows that the sequence (φ0
m, φ

1
m) = (sin (qmπx), 0) satisfies (5.13).

Proof of Theorem 5.1. According to Theorem 2.2, the solutions of (I) satisfy the estimate∣∣∣∣∣∣∣∣(u(t),
∂u

∂t
(t))
∣∣∣∣∣∣∣∣2
V×L2(0,1)

≤Me−ωt ||(u0, u1)||2V×L2(0,1), ∀ t ≥ 0, (5.19)

where M,ω > 0 are constants depending only on ξ, if and only if the solution φ of (5.5–5.7) satisfies

∫ T

0

∣∣∣∣∂φ∂t (ξ, s)
∣∣∣∣2 ds ≥ C||(u0, u1)||2V×L2(0,1), ∀ (u0, u1) ∈ V × L2(0, 1).

The inequality above clearly contradicts assertion 3 in Proposition 5.4. So assumption (5.38) is false. We end up
in this way the proof of the first assertion of theorem.

We pass now to the proof of the second assertion of this theorem. Let ξ ∈ S. By Proposition 5.4, the
solution φ of (5.5–5.7) satisfies the inequality

∫ T

0

∣∣∣∣∂φ∂t (ξ, t)
∣∣∣∣2 dt ≥ K1

(
‖u0‖2L2(0,1) + ‖u1‖2H−1(0,1)

)
, ∀(u0, u1) ∈ V × L2(0, 1),

where K1 > 0 is a constant. The conclusion (5.3) follows now by simply using the Theorem 2.4 (with X1

= L2(0, 1), X2 = H−1(0, 1), Y1 × Y2 = [H1
0 (0, 1) ∪H2(0, ξ) ∪H2(ξ, 1)]×H1

0 (0, 1),G(x) = x,∀x ∈ R+, θ = 1
2 ).
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Let us now suppose that ε > 0 and that ξ belongs to the set Bε. From (5.12), it follows (5.4) by Theorem
2.4 (with X1 = H−ε(0, 1), X2 = H−1−ε(0, 1), Y1× Y2 = [H1

0 (0, 1)∪H2(0, ξ)∪H2(ξ, 1)]×H1
0 (0, 1),G(x) = x,∀x

∈ R+, θ = 1
2+ε).

Remark 5.5. The same method can be applied for a string with different boundary conditions (see Ammari
et al. [2]). �

5.2. Second example: Stabilization of the Bernoulli–Euler beam

We consider the following initial and boundary value problem:

∂2u

∂t2
(x, t) +

∂4u

∂x4
(x, t) +

∂u

∂t
(ξ, t) δξ = 0, 0 < x < 1, t > 0, (5.20)

u(0, t) = u(1, t) =
∂2u

∂x2
(0, t) =

∂2u

∂x2
(1, t) = 0, t > 0, (5.21)

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x), 0 < x < 1. (5.22)

Here u denotes the transverse displacement of the beam, δξ is the Dirac mass concentrated at the point ξ ∈ (0, 1)
and we suppose that the length of the beam is equal to 1.

In this case,

X = L2(0, 1), U = R, V = H2(0, 1) ∩H1
0 (0, 1),

and

A =
d4

dx4
, D(A) =

{
u ∈ H4(0, 1) ∩H1

0 (0, 1),
d2u

dx2
(0) =

d2u

dx2
(1) = 0

}
,

Bk = kδξ, ∀ k ∈ R.
(5.23)

Ad is given by

Ad
(
u
v

)
=
(

v

− d4u
dx4 − v(ξ) δξ

)
,

∀ (u, v) ∈ D(Ad) =
{

(u, v) ∈
[
H2(0, 1) ∩H4(0, ξ) ∩H4(ξ, 1)

]
×H2(0, 1), u(0) = v(0)

= u(1) = v(1) =
d2u

dx2
(0) =

d2u

dx2
(1) = 0,

d2u

dx2
(ξ+) =

d2u

dx2
(ξ−),

d3u

dx3
(ξ+)− d3u

dx3
(ξ−) = −v(ξ)

}
·

The stability results can now be stated as follows.

Theorem 5.6. 1. For any ξ ∈ (0, 1) the system described by (5.20–5.22) is not exponentially stable
in V × L2(0, 1).
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2. For all ξ in the set S defined in Section 5.1 and for all t ≥ 0 we have∣∣∣∣∣∣∣∣(u(t),
∂u

∂t
(t))
∣∣∣∣∣∣∣∣2
V×L2(0,1)

≤ Cξ
(t+ 1)2

||(u0, u1)||2D(Ad),

∀ (u0, u1) ∈ D(Ad), (5.24)

where Cξ > 0 is a constant depending only on ξ.

3. If ε > 0 then, for almost all ξ ∈ (0, 1) and for all t ≥ 0 we have∣∣∣∣∣∣∣∣(u(t),
∂u

∂t
(t))
∣∣∣∣∣∣∣∣2
V×L2(0,1)

≤ Cξ,ε

(t+ 1)
2

1+ε
||(u0, u1)||2D(Ad),

∀ (u0, u1) ∈ D(Ad), (5.25)

where Cξ,ε > 0 is a constant depending only on ξ and ε.

In this case the problem (2.3, 2.4) becomes

∂2φ

∂t2
(x, t) +

∂4φ

∂x4
(x, t) = 0, 0 < x < 1, t > 0, (5.26)

φ(0, t) = φ(1, t) =
∂2φ

∂x2
(0, t) =

∂2φ

∂x2
(1, t) = 0, t > 0, (5.27)

φ(x, 0) = u0(x),
∂φ

∂t
(x, 0) = u1(x), 0 < x < 1. (5.28)

Lemma 5.7. The operators A and B defined in (5.23) satisfy assumption (H).

Proof. Let k ∈ R. It can be easily checked that v = (λ2 −A)−1Bk satisfies:

λ2v(x) +
d4v

dx4
(x) = 0, x ∈ (0, ξ) ∪ (ξ, 1), Reλ > 0, (5.29)

v(0) = v(1) =
d2v

dx2
(0) =

d2v

dx2
(1) = 0, Reλ > 0, (5.30)

[v]ξ =
[

dv
dx

]
ξ

=
[

d2v

dx2

]
ξ

= 0, (5.31)

[
d3v

dx3

]
ξ

= k, Reλ > 0, (5.32)

where we denote by [f ]ξ the jump of the function f at the point ξ.
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Recall that λ = iw2 where w ∈
{
reiγ ; r > 0, γ ∈] − π

2 , 0[
}

. Then, the solutions of (5.29–5.31) have the
following form

v(x) =


− 1

2w3

{
sin[w(ξ − 1)] sin(wx)

sin(w)
− sh(wx) sh[w(ξ − 1)]

sh(w)

}
k, x ∈ (0, ξ),

− 1
2w3

{
sin(wξ) sin[(w(x− 1)])

sin(w)
− sh(wξ) sh[w(x− 1)]

sh(w)

}
k, x ∈ (ξ, 1).

Then the function H(λ) = λB∗(λ2 −A)−1B is given by

H(λ = iw2) =
i

2w

{
− sin(wξ) sin[w(ξ − 1)]

sin(w)
+

sh(wξ)sh[w(ξ − 1)]
sh(w)

}
, ∀Reλ > 0.

By Lemma 3.4 in [1] we conclude that H(λ) is bounded on Cβ .
The observability inequalities are given in the proposition below.

Proposition 5.8. Let T > 0 be fixed and S ⊂ [0, 1] be the set introduced in Section 5.1. Then

1. For all ξ ∈ S the solution φ of (5.26–5.28) satisfies∫ T

0

∣∣∣∣∂φ∂t (ξ, t)
∣∣∣∣2 dt ≥ Cξ

(
‖u0‖2H1(0,1) + ‖u1‖2H−1(0,1)

)
,

∀(u0, u1) ∈ V × L2(0, 1), (5.33)

where Cξ > 0 is a constant depending only on ξ.

2. For all ε > 0 and for almost all ξ ∈ (0, 1) the solution φ of (5.26–5.28) satisfies∫ T

0

∣∣∣∣∂φ∂t (ξ, t)
∣∣∣∣2 dt ≥ Cξ,ε

(
‖u0‖2H1−ε(0,1) + ‖u1‖2H−1−ε(0,1)

)
,

∀(u0, u1) ∈ V × L2(0, 1), (5.34)

where Cξ,ε > 0 is a constant depending only on ξ and ε.

3. The result in assertion 1 is sharp in the sense that, for all ξ ∈ (0, 1), there exists a sequence (u0
m, u

1
m)

⊂ V × L2(0, 1) such that the corresponding sequence of solutions (φm) of (5.26, 5.27) with initial data
(u0
m, u

1
m) satisfies

lim
m→∞

∫ T
0

∣∣∣∂φm∂t (ξ, t)
∣∣∣2 dt

‖u0
m‖2H1+ε(0,1) + ‖u1

m‖2H−1+ε(0,1)

= 0. (5.35)

Proof. Let

u0(x) =
∞∑
n=1

an sin(nπx), u1(x) =
∞∑
n=1

nbn sin(nπx),
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with
(n2an), (nbn) ⊂ l2(R).

Which implies that

∂φ

∂t
(ξ, t) =

∞∑
n=1

[
−n2π2an sin (n2π2t) sin (nπξ) + n2π2bn cos (n2π2t) sin (nπξ)

]
. (5.36)

From (5.36) and Ingham’s inequality (see [10]), we obtain that, for all T > 2, there exists a constant CT > 0
such that ∫ T

0

∣∣∣∣∂φ∂t (ξ, t)
∣∣∣∣2 dt ≥ CT

∞∑
n=1

[
n4a2

n sin2 (nπξ) + n4b2n sin2 (nπξ)
]
. (5.37)

Suppose now that ξ belongs to the set S defined in Section 5.1. Then relations (5.37) and (5.2) imply the
existence of a constant KT,ξ > 0 such that∫ T

0

∣∣∣∣∂φ∂t (ξ, t)
∣∣∣∣2 dt ≥ KT,ξ

∞∑
n=1

[
n2a2

n + n2b2n
]
, ∀ ξ ∈ S,

which is exactly (5.33).
Assertions 2 and 3 of the proposition can be proved by simply adapting the proof of Proposition 5.4. So we

skip the details. �

Proof of Theorem 5.6. 1. According to Theorem 2.2, all finite energy solutions of (5.20–5.22) satisfy the estimate∣∣∣∣∣∣∣∣(u(t),
∂u

∂t
(t))
∣∣∣∣∣∣∣∣2
V×L2(0,1)

≤Me−ωt||(u0, u1)||2V×L2(0,1), ∀ t ≥ 0, (5.38)

where M,ω > 0 are constants depending only on ξ, if and only if the solution φ of (5.26–5.28) satisfies∫ T

0

∣∣∣∣∂φ∂t (ξ, s)
∣∣∣∣2 ds ≥ C||(u0, u1)||2V×L2(0,1), ∀ (u0, u1) ∈ V × L2(0, 1).

The inequality above clearly contradicts assertion 3 in Proposition 5.8. So Assumption (5.38) is false. We end
up in this way the proof of the first assertion of this theorem.

We pass now to the proof of the second assertion of this theorem. Let ξ ∈ S. By Proposition 5.8, the
solution φ of (5.26–5.28) satisfies the inequality∫ T

0

∣∣∣∣∂φ∂t (ξ, t)
∣∣∣∣2 dt ≥ K1

(
‖u0‖2H1(0,1) + ‖u1‖2H−1(0,1)

)
, ∀(u0, u1) ∈ V × L2(0, 1),

where K1 > 0 is a constant. The conclusion (5.24) follows now by simply using the Theorem 2.4 (with
X1 = H1(0, 1), X2 = H−1(0, 1), Y1 × Y2 =

[
H2(0, 1) ∩H4(0, 1) ∩H4(ξ, 1)

]
×H2(0, 1), θ = 2

3 ).
Let us now suppose that ε > 0 and that ξ belongs to the set Bε, introduced in the proof of Proposi-

tion 5.4. From (5.34), it follows (5.25) by Theorem 2.4 (with X1 = H1−ε(0, 1), X2 = H−1−ε(0, 1), Y1 × Y2

=
[
H2(0, 1) ∩H4(0, 1) ∩H4(ξ, 1)

]
×H2(0, 1), θ = 2

3+ε).

Remark 5.9. For different boundary condition there exist points ξ ∈ (0, 1) for which we have exponential
decay (see Rebarber [20] and [1] for characterization of these points). �
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5.3. Third example: Dirichlet boundary stabilization of the wave equation in a disk

Let BR =
{
x ∈ R2, ||x||e < R

}
with boundary ∂BR = Γ̄0∪Γ̄1, where Γ0,Γ1 are disjoint parts of the boundary

relatively open in ∂BR, int(Γ0) 6= ∅. Above ||.||e denotes the Euclidean norm in R2. We consider the wave
equation:

∂2u

∂t2
−∆u = 0, BR × (0,+∞), (5.39)

u =
∂

∂ν
(Gu′), Γ0 × (0,+∞), (5.40)

u = 0, Γ1 × (0,+∞), (5.41)

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x), BR, (5.42)

where ν is the unit normal vector of ∂BR pointing towards the exterior of BR and G = (−∆)−1 : H−1(BR)
→ H1

0 (BR).
Denote: A = −∆, D(A) = H1

0 (BR). We will also denote by A the extension of this operator A : L2(BR)
→ (H2(BR)∩H1

0 (BR))′. Notice that (H2(BR)∩H1
0 (BR))′ is the dual of D(A

1
2 ) with respect to the pivot space

H−1(BR). Moreover define

B ∈ L(L2(Γ0), (H2(BR) ∩H1
0 (BR))′)

by Bv = ADv, ∀ v ∈ L2(Γ0), where D ∈ L(L2(Γ0), L2(BR)) is the Dirichlet map i.e., Df = g if and only if{
∆g = 0, BR,
g = f, Γ0, g = 0, Γ1.

Problem (5.39–5.42) can be rewritten in V ×X = L2(BR)×H−1(BR) as follows{
u′′ +Au+BB∗u′ = 0,
u(0) = u0, u′(0) = u1.

Then, according to Proposition 2.1 the problem (5.39–5.42) is well-posed in L2(BR) × H−1(BR), i.e., for all
(u0, u1) ∈ L2(BR)×H−1(BR), equations (5.39–5.42) admit a unique solution

u ∈ C([0,∞);L2(BR)) ∩ C1([0,∞);H−1(BR)).

Moreover u(x, t) satisfies the following energy estimate

||(u0, u1)||2L2(BR)×H−1(BR) −
∣∣∣∣∣∣∣∣(u(t),

∂u

∂t
(t))
∣∣∣∣∣∣∣∣2
L2(BR)×H−1(BR)

= 2
∫ t

0

∫
Γ0

∣∣∣∣∣∂[G(∂u∂t )]
∂ν

(x, s)

∣∣∣∣∣
2

dΓ0 ds. (5.43)

Let φ be the solution of the following problem

∂2φ

∂t2
−∆φ = 0, BR × (0,∞), (5.44)
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φ = 0, ∂BR × (0,∞), (5.45)

φ(x, 0) = φ0(x),
∂φ

∂t
(x, 0) = φ1(x), BR. (5.46)

Denote

Ad =
(

0 I
∆ 0

)
,

with

D(Ad) =

{
(u, v) ∈ L2(BR)×H−1(BR)/ (v,∆u) ∈ L2(BR)×H−1(BR), u|Γ0 =

∂[Gv]
∂ν

, u|Γ1 = 0

}
·

If (u, v) ∈ D(Ad) we denote

||(u, v)||2D(Ad) = ||(u, v)||2L2(BR)×H−1(BR) + ||(v,∆u)||2L2(BR)×H−1(BR).

The following holds.

Theorem 5.10. Suppose that there exists T0 > 0 such that the solution φ of (5.44–5.46) satisfy for all T > T0∫ T

0

∫
Γ0

∣∣∣∣∂φ∂ν
∣∣∣∣2 dΓ0 dt ≥ C ||(φ0, φ1)||2H1

0 (BR)×L2(BR), (5.47)

where C is a positive constant which depends only on T0.
Then all finite energy solutions (u(t), u′(t)) of (5.39–5.42) decay exponentially to zero in L2(BR)×H−1(BR).

Similar results were proved in a more general geometry and by different methods (see for instance Bardos
et al. [4] and references therein).

Remark 5.11. Necessary and sufficient condition such that assumption (5.47) is satisfied is given in Bardos
et al. [5].

Theorem 5.12. For all (u0, u1) ∈ D(Ad) there exists a constant K > 0 such that∣∣∣∣∣∣∣∣(u(t),
∂u

∂t
(t))
∣∣∣∣∣∣∣∣2
L2(BR)×H−1(BR)

≤
K||(u0, u1)||2D(Ad)

ln(1 + t)
, ∀t > 0. (5.48)

Technicals results

To prove Theorem 5.10 and Theorem 5.12 we need the following technicals results.
Let β > 0 be a fixed real number and Cβ =

{
λ ∈ C |Reλ = β

}
. Denote by Jl the Bessel functions of integer

order of first kind: 
1
r

d
dr

(
r

dJl
dr

(r)
)

+
(

1− l2

r2

)
Jl(r) = 0, for r > 0,

Jl is regular in r = 0.
(5.49)
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Proposition 5.13. There exists a constant cβ > 0 (depends only on β and R), such that

sup
λ∈Cβ

1
|λ|

∣∣∣∣iλ J ′l (iλR)
Jl(iλR)

− l

R

∣∣∣∣ ≤ cβ .

Proof. The above estimate follows from the uniform asymptotic expansions of Jl(z) (for |l| and |z| big enough).
The reader is refered to Olver and Watson for the derivation and the proof of these asymptotic expansions.
According to Olver and Watson, there are three regions for the asymptotic expansions of Jl(z) : |z| � |l|, |l| � |z|
and the transition region where |z| ∼ |l|. Making use of the formulas given in Olver [18] and Watson [27] (pp. 231
and 249), in each region we compute the asymptotic expansion of J′l(z)

Jl(z)
. The following holds.

For |l| � |Imλ|, ∣∣∣∣iλ J ′l (iλR)
Jl(iλR)

− l

R

∣∣∣∣ ≤ C,
where C is independant in l and in Imλ.

For |l| ∼ |Imλ|,

iλ
J ′l (iλR)
Jl(iλR)

∼ λ 2
3 .

For |l| � |Imλ|, ∣∣∣∣iλ J ′l (iλR)
Jl(iλR)

− l

R

∣∣∣∣ ≤ C |λ|,
where C is independent in l and Imλ.

The estimates above end the proof.

Proposition 5.14. For all (φ0, φ1) ∈ L2(BR) × H−1(BR) and for all Γ0 ⊂ ∂BR, int(Γ0) 6= ∅, there exist
T,C1 > 0 such that

∫ T

0

∫
Γ0

∣∣∣∣ ∂∂ν
[
G

(
∂φ

∂t

)]∣∣∣∣2 dΓ0 dt ≥ ||φ0, φ1||2L2(BR)×H−1(BR) exp

(
− 2C2

1

||(φ0, φ1)||2L2(BR)×H−1(BR)

||(φ0, φ1)||2H−1(BR)×H−2(BR)

)
·

Proof. Let ψ = G(∂φ∂t ), then ψ satisfy (5.44, 5.45) with (ψ0 = G(φ1), ψ1 = −φ0) ∈ H1
0 (BR) × L2(BR). Thus,

according to Theorem 1 in Robbiano [21], for all Γ0 ⊂ ∂BR, there exist T,C1 > 0 such that

||(G(φ1),−φ0)||L2(BR)×H−1(BR) ≤
C1 ||(G(φ1),−φ0)||H1

0 (BR)×L2(BR)ln

2 +
||(G(φ1),−φ0)||

H1
0(BR)×L2(BR)( R

T
0

R
Γ0
| ∂∂ν [G( ∂φ∂t )]|2 dΓ0 dt

) 1
2




1
2
·
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Which obviously implies,∫ T

0

∫
Γ0

∣∣∣∣ ∂∂ν
[
G

(
∂φ

∂t

)]∣∣∣∣2 dΓ0 dt ≥ ||φ0, φ1||2L2(BR)×H−1(BR) exp

(
− 2C2

1

||(φ0, φ1)||2L2(BR)×H−1(BR)

||(φ0, φ1)||2H−1(BR)×H−2(BR)

)
·

�
Proof of Theorem 5.10. By Theorem 2.2 it suffices to verify (H).

Notice first that

B∗v =
∂[G(v)]
∂ν

, ∀ v ∈ L2(BR).

The function H(λ) ∈ L(L2(Γ0)) associated to the problem (5.39–5.42) has an explicit representation in terms
of Bessell functions. The function w = (λ2 −∆)−1Bg satisfies{

λ2w −∆w = 0, BR,
w = g, Γ0, w = 0, Γ1,

where g ∈ L2(Γ0).
If we consider the Fourier expansion

f =
{
g, Γ0,

0, Γ1,
=
∑
l∈Z

fl eilθ ∈ L2(∂BR),

a simple calculation using (5.49) shows

w(x) = w(r, θ) =
∑
l∈Z

Jl(iλr)
Jl(iλR)

fl eilθ.

Thus,

G(w)(x) = G(w)(r, θ) =
1
λ2

∑
l∈Z

(
Jl(iλr)
Jl(iλR)

−
( r
R

)l)
fl eilθ.

Which obviously implies that

H(λ)g = λ
∂[G(w)]
∂ν |r=R

=
1
λ

∑
l∈Z

(
iλ
J ′l (iλR)
Jl(iλR)

− l

R

)
fl eilθ, ∀Reλ > 0.

By Proposition 5.13 we obtain

||H(λ)g||2L2(Γ0) =
1
|λ|2

∑
l∈Z

∣∣∣∣iλ J ′l (iλR)
Jl(iλR)

− l

R

∣∣∣∣2 |fl|2 ≤ c2β ||f ||2L2(∂BR) = c2β ||g||2L2(Γ0),

where the positive constant cβ depends only on β and R. From this estimate we conclude that the function H(λ)
is bounded on Cβ , i.e. (H) holds true.

Thus, making use of Theorem 2.2, we obtain the exponential stability of all finite energy solutions
of (5.39–5.42). �
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Proof of Theorem 5.12. According to Proposition 5.14, for all (u0, u1) ∈ L2(BR) × H−1(BR) and for
all Γ0 ⊂ ∂BR, there exist T > 0 and C1 > 0 such that

∫ T

0

∣∣∣∣∣
∣∣∣∣∣∂[G(∂φ∂t )]

∂ν

∣∣∣∣∣
∣∣∣∣∣
2

L2(Γ0)

dt ≥ ||(u0, u1)||2L2(BR)×H−1(BR) exp

(
− 2C2

1

||(u0, u1)||2L2(BR)×H−1(BR)

||(u0, u1)||2H−1(BR)×H−2(BR)

)
·

Since (H) is satisfied (see the proof of Th. 5.10), then Lemma 4.1 implies that the solution u(x, t) of (5.39–5.42)
satisfies the following inequality

∫ T

0

∣∣∣∣∣
∣∣∣∣∣∂[G(∂u∂t )]

∂ν

∣∣∣∣∣
∣∣∣∣∣
2

L2(Γ0)

dt ≥ C ||(u0, u1)||2L2(BR)×H−1(BR) exp

(
− 2C2

1

||(u0, u1)||2L2(BR)×H−1(BR)

||(u0, u1)||2H−1(BR)×H−2(BR)

)
,

∀(u0, u1) ∈ L2(BR)×H−1(BR).

Estimate (5.48) follow from Theorem 2.4 (with X1 = H−1(BR), X2 = H−2(BR), Y1 × Y2 = H1(BR)
×L2(BR),G(x) = exp(− 2C2

1
x ), ∀x > 0, θ = 1

2 ). �

The authors thank the referee for his helpful suggestions and comments.
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[22] D.L. Russell, Decay rates for weakly damped systems in Hilbert space obtained with control theoretic methods. J. Differential

Equations 19 (1975) 344-370.
[23] D.L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent and open questions.

SIAM Rev. 20 (1978) 639-739.
[24] H. Triebel, Interpolation theory, function spaces, differential operators. North Holland, Amsterdam (1978).
[25] M. Tucsnak, Regularity and exact controllability for a beam with piezoelectric actuator. SIAM J. Control Optim. 34 (1996)

922-930.
[26] M. Tucsnak and G. Weiss, How to get a conservative well posed linear system out of thin air. Preprint.
[27] G.N. Watson, A treatise on the theory of Bessel functions. Cambridge University Press.
[28] G. Weiss, Regular linear systems with feedback. Math. Control Signals Systems 7 (1994) 23-57.


