@article{COCV_2000__5__139_0, author = {Ferrier, Christophe}, title = {Computation of the distance to semi-algebraic sets}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {139--156}, publisher = {EDP-Sciences}, volume = {5}, year = {2000}, zbl = {1054.14534}, mrnumber = {1744609}, language = {en}, url = {http://www.numdam.org/item/COCV_2000__5__139_0/} }
TY - JOUR AU - Ferrier, Christophe TI - Computation of the distance to semi-algebraic sets JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2000 DA - 2000/// SP - 139 EP - 156 VL - 5 PB - EDP-Sciences UR - http://www.numdam.org/item/COCV_2000__5__139_0/ UR - https://zbmath.org/?q=an%3A1054.14534 UR - https://www.ams.org/mathscinet-getitem?mr=1744609 LA - en ID - COCV_2000__5__139_0 ER -
Ferrier, Christophe. Computation of the distance to semi-algebraic sets. ESAIM: Control, Optimisation and Calculus of Variations, Tome 5 (2000), pp. 139-156. http://www.numdam.org/item/COCV_2000__5__139_0/
[1] Interior point methods in semidefinite programming with application to combinatorial optimisation. SIAM J. Optim. 5 ( 1995) 13-51. | MR 1315703 | Zbl 0833.90087
,[2] Construction de fonctions d'itération pour le calcul simultané des solutions d'équations et de systèmes d'équations algébriques. Thèse de doctorat de l'Universté Paul Sabatier, Toulouse ( 1992).
,[3] Linear Matrix Inequalities Problem in Control Theory. SIAM, Philadelphia, Stud. Appl. Math. 15 ( 1995).
et al.,[4] Localization of an algebraic hypersurface by the exclusion algorithm. Comm. Comput. 2 ( 1992) 239-256. | MR 1325531 | Zbl 0759.14045
and ,[5] Hubert's 17th problem and best dual bounds in quadratic minimization. Cybernetics and System Analysis 5 ( 1998) 76-91. | MR 1712046 | Zbl 0972.13017
,[6] Nonlinear Programming: Sequential Unconstrained Minimization Techniques. John Wiley ( 1968). Reprinted SIAM, 1990. | MR 1058438 | Zbl 0193.18805
and ,[7] Semi-defmite matrix constraints in optimization. SIAM J. Control Optim. 23 ( 1985) 493-513. | MR 791884 | Zbl 0567.90088
,[8] Convex Analysis and Minimization Algorithms II. Springer Verlag, Comprehensive Studies in Mathematics 306 ( 1991). | MR 1295240 | Zbl 0795.49002
and ,[9] Interior-point methods for convex programming. Appl. Math. Optim. 26 ( 1992) 287-391. | MR 1175483 | Zbl 0767.90063
,[10] An interior-point method for minimizing the maximum eigenvalue of a linear combination of matrices. SIAM J. Control Optim. 31 ( 1993) 1360-1377. | MR 1234007 | Zbl 0780.65023
,[11] A new polynomial-time algorithm for linear programming. Combinatorica 4 ( 1984) 373-395. | MR 779900 | Zbl 0557.90065
,[12] Some tests of generalized bisection. ACM Trans. Math. Software 13 ( 1987197-200. | MR 918576 | Zbl 0632.65056
,[13] Interior-point polynomial methods in convex programming. SIAM, Philadelphia, Stud. Appl. Math. 13 ( 1994). | Zbl 0824.90112
and ,[14] Dual estimate in multi-extremal problems. J. Global Optim. 2 ( 1992) 411-418. | Zbl 0765.90072
,[15] An "analytical centre" for polyhedrons and a new classe of global algorithms for linear (smooth, convex) programming. Springer Verlag, Lecture Notes in Control and Inform. Sci. 84, System Modeling and Optimisation. 12th IFIP Conference on system optimisation 1984 ( 1986) 866-878. | MR 903521 | Zbl 0602.90106
,[16] Global ellipsoidal approximation and homotopy methods for solving convex analitic programs. Appl. Math. Optim. 21 ( 1990) 139-165. | MR 1019398 | Zbl 0691.90071
and ,[17] Matrix Computation in C. University of Queensland, Australia ( 1992). ftp site: des@thrain.anu.edu.au. directory: pub/meschach
,[18] Semidefinite programming. SIAM Rev. 1 ( 1996) 49-95. | MR 1379041 | Zbl 0845.65023
and ,[19] Homotopy exploiting newton polytopes for solving sparse polynomials systems. SIAM J. Numer. Anal. 31 ( 1994) 915-930. | MR 1275120 | Zbl 0809.65048
, and ,[20] Finding solutions to a system of polynomial equations. Math. Comp. 44 ( 1985) 125-133. | MR 771035 | Zbl 0567.55002
,