Selmer groups and Heegner points in anticyclotomic p -extensions
Compositio Mathematica, Volume 99 (1995) no. 2, pp. 153-182.
@article{CM_1995__99_2_153_0,
     author = {Bertolini, Massimo},
     title = {Selmer groups and {Heegner} points in anticyclotomic $\mathbb {Z}_p$-extensions},
     journal = {Compositio Mathematica},
     pages = {153--182},
     publisher = {Kluwer Academic Publishers},
     volume = {99},
     number = {2},
     year = {1995},
     zbl = {0862.11043},
     mrnumber = {1351834},
     language = {en},
     url = {http://www.numdam.org/item/CM_1995__99_2_153_0/}
}
TY  - JOUR
AU  - Bertolini, Massimo
TI  - Selmer groups and Heegner points in anticyclotomic $\mathbb {Z}_p$-extensions
JO  - Compositio Mathematica
PY  - 1995
DA  - 1995///
SP  - 153
EP  - 182
VL  - 99
IS  - 2
PB  - Kluwer Academic Publishers
UR  - http://www.numdam.org/item/CM_1995__99_2_153_0/
UR  - https://zbmath.org/?q=an%3A0862.11043
UR  - https://www.ams.org/mathscinet-getitem?mr=1351834
LA  - en
ID  - CM_1995__99_2_153_0
ER  - 
%0 Journal Article
%A Bertolini, Massimo
%T Selmer groups and Heegner points in anticyclotomic $\mathbb {Z}_p$-extensions
%J Compositio Mathematica
%D 1995
%P 153-182
%V 99
%N 2
%I Kluwer Academic Publishers
%G en
%F CM_1995__99_2_153_0
Bertolini, Massimo. Selmer groups and Heegner points in anticyclotomic $\mathbb {Z}_p$-extensions. Compositio Mathematica, Volume 99 (1995) no. 2, pp. 153-182. http://www.numdam.org/item/CM_1995__99_2_153_0/

1 Bertolini, M.: Iwasawa Theory, L-functions and Heegner Points, PhD Thesis, Columbia University, 1992.

2 Bertolini, M. and Darmon, H.: Kolyvagin's descent and Mordell-Weil groups over ring class fields, J. für die Reine und Angewandte Mathematik 412 (1990), 63-74. | MR | Zbl

3 Bertolini, M. and Darmon, H.: Derived heights and generalized Mazur-Tate regulators, Duke Math. J. 76 (1994), 75-111. | MR | Zbl

4 Bertolini, M. and Darmon, H.: Derived p-adic heights, submitted.

5 Bourbaki, N.: Algèbre Commutative, Ch.7, Diviseurs, Hermann et Co., Paris, 1965. | MR | Zbl

6 Darmon, H.: Refined Class Number Formulas and Derivatives of L-functions, PhD Thesis, Harvard University, 1991.

7 Cassels, J.W.S. and Frölich, A.: Algebraic Number Theory, Academic Press, New York, 1969. | MR | Zbl

8 Gross, B.H.: Kolyvagin's work on modular elliptic curves, in L-functions and Arithmetic, Cambridge University Press, Cambridge, 1991, pp. 235-256. | MR | Zbl

9 Gross, B.H. and Zagier, D.: Heegner points and derivatives of L-series, Inventiones Math. 84 (1986), 225-320. | MR | Zbl

10 Kolyvagin, V.A.: Euler Systems, The Grothendieck Festschrift, vol. 2, Progr. in Math. 87, Birkhäuser, 1990, pp. 435-483. | MR | Zbl

11 Lang, S.: Algebra, 2nd edn, Addison Wesley, 1984. | Zbl

12 Mazur, B.: Modular Curves and Arithmetic, Proc. Int. Congress of Math., Warszawa, 1983. | Zbl

13 Mazur, B.: Rational points of Abelian Varieties with values in towers of number fields, Inventiones Math. 18 (1972), 183-266. | MR | Zbl

14 Manin, Ju.: Cyclotomic fields and modular curves. Engl. transl.: Russian Math. Surveys 26 (1971), 7-78. | MR | Zbl

15 Milne, J.S.: Arithmetic duality theorems, in Perspective in Math., Academic Press, New York, 1986. | MR | Zbl

16 Perrin-Riou, B.: Fonctions L p-adiques, Théorie d'Iwasawa et points de Heegner, Bull. Soc. Math. de France 115 (1987), 399-456. | Numdam | MR | Zbl

17 Perrin-Riou, B.: Points de Heegner et derivées de fonctions L p-adiques, Inventiones Math. 89 (1987), 455-510. | MR | Zbl

18 Rohrlich, D.: On L-functions of elliptic curves and anti-cyclotomic towers, Inventiones Math. 64 (1984), 383-408. | MR | Zbl

19 Rubin, K.C.: The Main Conjecture, Appendix in S. Lang, Cyclotomic fields, I and II, GTM 121, Springer-Verlag, 1990. | Zbl

20 Rubin, K.C.: The "main conjectures" of Iwasawa theory for imaginary quadratic fields, Inventiones Math. 103 (1991), 25-68. | MR | Zbl

21 Serre, J.P.: Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Inventiones Math. 15 (1972), 259-331. | MR | Zbl

22 Serre, J.P.: Abelian l-adic Representations and Elliptic Curves, Advanced Book Classics, Addison Wesley, 1989. | MR | Zbl

23 Tate, J.: WC-groups over p-adic Fields, Séminaire Bourbaki no. 156, 1957. | Numdam | MR | Zbl

24 Tate, L.: Duality theorems in Galois cohomology over number fields, in Proc. Int. Congress of Math., Stockholm, 1962, pp. 288-295. | MR | Zbl