Variétés abéliennes réelles et toupie de Kowalevski
Compositio Mathematica, Volume 87 (1993) no. 2, pp. 153-229.
@article{CM_1993__87_2_153_0,
     author = {Audin, Michele and Silhol, Robert},
     title = {Vari\'et\'es ab\'eliennes r\'eelles et toupie de {Kowalevski}},
     journal = {Compositio Mathematica},
     pages = {153--229},
     publisher = {Kluwer Academic Publishers},
     volume = {87},
     number = {2},
     year = {1993},
     zbl = {0774.58012},
     mrnumber = {1219634},
     language = {fr},
     url = {http://www.numdam.org/item/CM_1993__87_2_153_0/}
}
TY  - JOUR
AU  - Audin, Michele
AU  - Silhol, Robert
TI  - Variétés abéliennes réelles et toupie de Kowalevski
JO  - Compositio Mathematica
PY  - 1993
DA  - 1993///
SP  - 153
EP  - 229
VL  - 87
IS  - 2
PB  - Kluwer Academic Publishers
UR  - http://www.numdam.org/item/CM_1993__87_2_153_0/
UR  - https://zbmath.org/?q=an%3A0774.58012
UR  - https://www.ams.org/mathscinet-getitem?mr=1219634
LA  - fr
ID  - CM_1993__87_2_153_0
ER  - 
%0 Journal Article
%A Audin, Michele
%A Silhol, Robert
%T Variétés abéliennes réelles et toupie de Kowalevski
%J Compositio Mathematica
%D 1993
%P 153-229
%V 87
%N 2
%I Kluwer Academic Publishers
%G fr
%F CM_1993__87_2_153_0
Audin, Michele; Silhol, Robert. Variétés abéliennes réelles et toupie de Kowalevski. Compositio Mathematica, Volume 87 (1993) no. 2, pp. 153-229. http://www.numdam.org/item/CM_1993__87_2_153_0/

[1] M. Adler, P. Van Moerbeke: Completely integrable systems, euclidian Lie algebras and curves, et Linearization of hamiltonian systems, Jacobi varieties and representation theory, Advances in Math. 38 (1980), 267-317 et 318-379. | MR | Zbl

[2] M. Adler and P. van Moerbeke: The Kowalevski and Hénon-Heiles motions as Manakov geodesic flows on SO(4) - a two-dimensional family of Lax pairs, Comm. Math. Phys. 113 (1988), 659-700. | MR | Zbl

[3] P. Appell: Traité de mécanique rationnelle, vol. II, Gauthier-Villars, Paris, 1931.

[4] G.G. Appelrot, Non Totally Symmetric Gyroscopes, Moscow 1940.

[5] V.I. Arnold: Méthodes Mathématiques de la Mécanique Classique, MIR, Moscou, 1974. | Zbl

[6] M. Audin: The Topology of Torus Actions on Symplectic Manifolds, Progress in Math. 93, Birkhäuser, 1991. | MR | Zbl

[7] A.I. Bobenko, A.G. Reyman, M.A. Semenov-Tian-Shansky: The Kowalevski top 99 years later: A Lax pair, generalizations and explicit solutions, Commun. Math. Phys. 122 (1989), 321-354. | MR | Zbl

[8] A. Comessatti: Sulle varietà abeliane reale I e II, Ann. Mat. Puro Appl. 2 (1924), 67-106 et 4 (1926), 27-71. | JFM

[9] H. Farkas and I. Kra: Riemann Surfaces, Graduate texts in Math. 71, Springer, 1980. | MR | Zbl

[10] J.D. Fay: Theta functions on Riemann surfaces, Lecture Notes in Mathematics, Springer, 392, 1973. | MR | Zbl

[11] A.T. Fomenko: The topology of surfaces of constant energy in integrable hamiltonian systems and obstructions to integrability, Math. USSR Izvestya 29 (1987), 629-658. | Zbl

[12] A.T. Fomenko: Integrability and Nonintegrability in Geometry and Mechanics, Math. and its Applications, Kluwer, 1988. | MR | Zbl

[13] J.-P. Françoise and R. Silhol: Real abelian varieties and the singularities of an integrable hamiltonian system, Real analytic and algebraic geometry, Lecture Notes in Mathematics, 1420, 1990. | Zbl

[14] V.V. Golubev: Lectures on Integration of the Equations of Motion of a Rigid Body about a Fixed Point, Israel program for scientific translations, Haifa, 1960. | MR | Zbl

[15] P.A. Griffiths: Linearizing flows and a cohomological interpretation of Lax equations, Amer. J. Math. 107 (1985), 1445-1483. | MR | Zbl

[16] B. Gross and J. Harris: Real algebraic curves, Ann. Sci. Ec. Norm. Sup. 14 (1981), 157-182. | EuDML | Numdam | MR | Zbl

[17] L. Haine: Geodesic flow on SO(4) and abelian surfaces, Math. Ann. 263 (1983), 435-472. | EuDML | MR | Zbl

[18] E. Horozov and P. Van Moerbeke: The full geometry of Kowalevski's top and (1, 2)-abelian surfaces, Comm. Pure and Appl. Math. 42 (1989), 357-407. | MR | Zbl

[19] M.P. Kharlamov: Bifurcation of common levels of first integrals of the Kowalevskaya problem, PMN U.S.S.R. 47 (1983), 737-743. | MR | Zbl

[20] S. Kowalevski: Sur le problème de la rotation d'un corps solide autour d'un point fixe, Acta Math. 12 (1889), 177-232. | JFM

[21] S.V. Manakov: Note on the integration of Euler's equations of the dynamics of an n-dimensional rigid body, Funct. Anal. Appl. 11 (1976), 328-329. | Zbl

[22] T. Ratiu and P. van Moerbeke: The Lagrange rigid body motion, Ann. Institut Fourier 33 (1982), 211-234. | EuDML | Numdam | MR | Zbl

[23] A.G. Reiman: Integrable hamiltonian systems connected with graded Lie algebras, J. Soviet Math. 19 (1982), 1507-1545. | Zbl

[24] M. Seppala and R. Silhol: Moduli spaces for real algebraic curves and real abelian varieties, Math. Z. 201 (1989), 151-165. | EuDML | MR | Zbl

[25] J.-P. Serre: Groupes Algébriques et Corps de Classes, Hermann, Paris, 1959. | Zbl

[26] R. Silhol: Real algebraic surfaces, Lecture Notes in Mathematics, Springer, 1392, 1989. | MR | Zbl

[27] R. Silhol: Compactifications of real moduli spaces in real algebraic geometry, Invent. Math. 107 (1992), 151-202. | EuDML | MR | Zbl

[28] J.-L. Verdier: Algèbres de Lie, systèmes hamiltoniens, courbes algébriques, Séminaire Bourbaki, Springer (1980), 85-94. | EuDML | Numdam | MR | Zbl

[29] A. Weil: Euler and the Jacobians of elliptic curves, arithmetic and geometry, papers dedicated to Shafarevich, Progress in Math., Birkhäuser, 1983. | MR | Zbl