On the unitary dual of the classical Lie groups II. Representations of SO(n,m) inside the dominant Weyl Chamber
Compositio Mathematica, Volume 86 (1993) no. 2, p. 127-146
@article{CM_1993__86_2_127_0,
     author = {Salamanca-Riba, Susana},
     title = {On the unitary dual of the classical Lie groups II. Representations of $SO(n, m)$ inside the dominant Weyl Chamber},
     journal = {Compositio Mathematica},
     publisher = {Kluwer Academic Publishers},
     volume = {86},
     number = {2},
     year = {1993},
     pages = {127-146},
     zbl = {0782.22010},
     mrnumber = {1214453},
     language = {en},
     url = {http://www.numdam.org/item/CM_1993__86_2_127_0}
}
Salamanca-Riba, Susana A. On the unitary dual of the classical Lie groups II. Representations of $SO(n, m)$ inside the dominant Weyl Chamber. Compositio Mathematica, Volume 86 (1993) no. 2, pp. 127-146. http://www.numdam.org/item/CM_1993__86_2_127_0/

[1] A. Borel and N. Wallach: Continuous cohomology, discrete subgroups and representations of reductive subgroups, in Annals of Mathematics Studies Vol. 94, Princeton University Press, 1980. | MR 554917 | Zbl 0443.22010

[2] S. Salamanca-Riba: On the unitary dual of some classical Lie groups, Compositio Math. 68 (1988), 251-303. | Numdam | MR 971329 | Zbl 0692.22007

[3] B. Speh and D. Vogan: Reducibility of generalized principal series representations, Acta Math. 145 (1980), 227-229. | MR 590291 | Zbl 0457.22011

[4] D. Vogan: Representations of Real Reductive Lie Groups, Birkhäuser, Boston-Basel- Stuttgart, 1981. | MR 632407 | Zbl 0469.22012

[5] D. Vogan: Unitarizability of certain series of representations, Annals Math. 120 (1984),141-187. | MR 750719 | Zbl 0561.22010

[6] G. Zuckerman: On Construction of Representations by Derived Functors. Handwritten notes, 1977.