A variational Torelli theorem for cyclic coverings of high degree
Compositio Mathematica, Volume 85 (1993) no. 2, pp. 201-228.
@article{CM_1993__85_2_201_0,
     author = {Ivinskis, K\k{e}stutis},
     title = {A variational {Torelli} theorem for cyclic coverings of high degree},
     journal = {Compositio Mathematica},
     pages = {201--228},
     publisher = {Kluwer Academic Publishers},
     volume = {85},
     number = {2},
     year = {1993},
     zbl = {0812.14005},
     mrnumber = {1204780},
     language = {en},
     url = {http://www.numdam.org/item/CM_1993__85_2_201_0/}
}
TY  - JOUR
AU  - Ivinskis, Kęstutis
TI  - A variational Torelli theorem for cyclic coverings of high degree
JO  - Compositio Mathematica
PY  - 1993
DA  - 1993///
SP  - 201
EP  - 228
VL  - 85
IS  - 2
PB  - Kluwer Academic Publishers
UR  - http://www.numdam.org/item/CM_1993__85_2_201_0/
UR  - https://zbmath.org/?q=an%3A0812.14005
UR  - https://www.ams.org/mathscinet-getitem?mr=1204780
LA  - en
ID  - CM_1993__85_2_201_0
ER  - 
%0 Journal Article
%A Ivinskis, Kęstutis
%T A variational Torelli theorem for cyclic coverings of high degree
%J Compositio Mathematica
%D 1993
%P 201-228
%V 85
%N 2
%I Kluwer Academic Publishers
%G en
%F CM_1993__85_2_201_0
Ivinskis, Kęstutis. A variational Torelli theorem for cyclic coverings of high degree. Compositio Mathematica, Volume 85 (1993) no. 2, pp. 201-228. http://www.numdam.org/item/CM_1993__85_2_201_0/

[At] Atiyah, M.: Complex analytic connections in fibre bundles. Trans. Am. Math. Soc. 85 (1957) 181-207. | MR | Zbl

[CDT] Cox, D., Donagi, R., Tu, L.: Variational Torelli implies generic Torelli. Invent. math. 88 (1987) 439-446. | EuDML | MR | Zbl

[CG] Carlson, J., Griffiths, P.: Infinitesimal variations of Hodge structure and the global Torelli problem. Journées de géométrie algébrique D'Angers, Sijthoff and Nordhoff, 51-76 (1980). | MR | Zbl

[CGGH] Carlson, J., Green, M., Griffiths, P., Harris, J.: Infinitesimal variation of Hodgestructure I. Compos. Math. 50 (1983) 109-205. | EuDML | Numdam | MR | Zbl

[Do] Donagi, R.: Generic Torelli for projective hypersurfaces. Compos. Math. 50 (1983) 325-353. | EuDML | Numdam | MR | Zbl

[Do2] Donagi, R.: Generic Torelli and Variational Schottky. Topics in Transcendental Algebraic Geometry, Ann. of Math. Stud. 106, Princeton Univ. Press, 239-258 (1984). | MR | Zbl

[EV1] Esnault, H., Viehweg, E.: Revêtement cycliques. Algebraic Threefolds, Proceedings, Varenna 1981. Lect. Notes Math. 947, 241-250 (1982). | MR | Zbl

[EV2] Esnault, H., Viehweg, E.: Logarithmic De Rham complexes and vanishing theorems. Invent. math. 86 (1986) 161-194. | EuDML | MR | Zbl

[Fl] Flenner, H.: The infinitesimal Torelli problem for zero sets of sections of vector bundles. Math. Z. 193 (1986) 307-322. | EuDML | MR | Zbl

[Gre] Green, M.L.: The period map for hypersurface sections of high degree of an arbitrary variety. Compos. Math. 55 (1984) 135-156. | Numdam | MR | Zbl

[Ha] Hartshorne, R.: Algebraic geometry. GTM 52. Berlin, Heidelberg, New York: Springer 1977. | MR | Zbl

[Iv] Ivinskis, K.: Torellisätze für zyklische Überlagerungen. Dissertation Bonn 1990, Preprint 90-24, Max-Planck-Institut für Mathematik Bonn (1990). | MR

[Ka] Kawamata, Y.: A generalization of Kodaira-Ramanujam's vanishing theorem. Math. Ann. 261 (1982) 43-46. | MR | Zbl

[Kn] Konno, K.: On Deformations and the local Torelli Problem of cyclic branched coverings. Math. Ann. 271 (1985) 601-617. | MR | Zbl

[Mu1] Mumford, D.: Lectures on curves on an algebraic surface. Princeton University Press (1966). | MR | Zbl

[Mu2] Mumford, D.: Varieties defined by quadratic equations. Questions on Algebraic Varieties, CIME, 29-100 (1970). | MR | Zbl

[Og] Ogus, A.: On the formal neighborhood of a subvariety of projective space. Am. J. of Math. 97, 1085-1107 (1976). | MR | Zbl

[PS] Peters, C., Steenbrink, J.: Infinitesimal variations of Hodgestructures and the generic Torelli problem for projective hypersurfaces. Classification of Algebraic and Analytic Manifolds, Birkhäuser, 399-464 (1983). | MR | Zbl

[Vie1] Viehweg, E.: Vanishing theorems. J. Reine Angew. Math. 335 (1982) 1-8. | MR | Zbl

[Wa] Wahl, J.M.: A cohomological characterization of Pn. Invent. math. 72 (1983) 315-322. | MR | Zbl