The Milnor fiber and the zeta function of the singularities of type f=P(h,g)
Compositio Mathematica, Volume 79 (1991) no. 1, p. 63-97
@article{CM_1991__79_1_63_0,
     author = {N\'emethi, Andr\'as},
     title = {The Milnor fiber and the zeta function of the singularities of type $f = P(h,g)$},
     journal = {Compositio Mathematica},
     publisher = {Kluwer Academic Publishers},
     volume = {79},
     number = {1},
     year = {1991},
     pages = {63-97},
     zbl = {0724.32020},
     mrnumber = {1112280},
     language = {en},
     url = {http://www.numdam.org/item/CM_1991__79_1_63_0}
}
Némethi, András. The Milnor fiber and the zeta function of the singularities of type $f = P(h,g)$. Compositio Mathematica, Volume 79 (1991) no. 1, pp. 63-97. http://www.numdam.org/item/CM_1991__79_1_63_0/

[1] A'Campo, N., Le groupe de monodromie du deploiement des singularités isolées de courbes planes I, Math. Ann.(1975) 213, 1-32. | MR 377108 | Zbl 0316.14011

[2] A'Campo, N., La fonction zeta d'une monodromie. Commentarii Mathematici Helvetici (1975) 50, 233-248. | MR 371889 | Zbl 0333.14008

[3] Arnold, V.I., Gausein-Zade, S.M. and Varchenko, A.N., Singularities of differentiable maps, Vols I and II, Birkhäuser, 1988. | Zbl 0554.58001

[4] Bourbaki, N., Éléments de mathematiques, Livre II, Algèbre, Chap. 8. | Zbl 0455.18010

[5] Bruce, J.W. and Roberts, R.M., Critical points of functions on analytic varieties, Topology Vol. 27 No. 1, 57-90 (1988). | MR 935528 | Zbl 0639.32008

[6] Deligne, P., Le formalisme des cycles évanescents, SGA VII2, Exp. XIII, Lecture Notes in Math. 340, 82-115 (1973). | Zbl 0266.14008

[7] Dimca, A., Function gems defined on isolated hypersurface singularities, Compositio Math. 53 (1984), 245-258. | Numdam | MR 766299 | Zbl 0548.32005

[8] Dold, A. and Thom, R., Quasifaserungen und unendliche symmetrische producte, Ann. Math. 67 (1958). | MR 97062 | Zbl 0091.37102

[9] Eisenbud, D. and Neumann, W., Three-dimensional link theory and invariants of plane curve singularities. Ann. of Math. Studies, Princeton Univ. Press, 110 (1985). | MR 817982 | Zbl 0628.57002

[10] Fox, R., Free differential calculus II, Math. Ann. 59(2), March (1954). | MR 62125 | Zbl 0055.01704

[11] Gusein-Zade, S.M., Intersection matrices for certain singularities of functions of two variables, Funk. Anal. Pril. 8(1) (1974) 11-15. | MR 338437 | Zbl 0304.14009

[12] Gusein-Zade, S.M., Dynkin diagrams of singularities of functions of two variables. Funk. Anal. Pril. 8(4) (1974) 23-30. | MR 430302 | Zbl 0309.14006

[13] Iomdin, I.N., Local topological properties of complex algebraic sets, Sibirsk. Mat. Z. 15(4) (1974), 784-805. | MR 447620 | Zbl 0305.14001

[14] Iomdin, I.N., Complex surfaces with a one dimensional set of singularities, Sibirsk. Mat. Z, 15(5) (1974), 1061-1082. | MR 447621 | Zbl 0325.32003

[15] Kato, M. and Matsumoto, Y., On the connectivity of the Milnor fibre of a holomorphic function at a critical point, Proc. 1973 Tokyo Manifold Confer., 131-136. | MR 372880 | Zbl 0309.32008

[16] Lê Dung Tráng , Calcul du nombre de cycles évanouissants d'une hypersurface complexe, Ann. Inst. Fourier (Grenoble) 23 (1973) 261-270. | Numdam | MR 330501 | Zbl 0293.32013

[17] Lê Dung Tráng , Le monodromie n'a pas de points fixes, J. Fac. Sci. Univ. Tokyo Sec. IA. Math, 22 (1975), 409-427. | MR 401756 | Zbl 0355.32012

[18] Lê Dung Tráng , Ensembles analytiques complexes avec lieu singulier de dimension un (d'apres I.N. Iomdin). Séminaire sur les singularités, Publ. Math. Univ. Paris VII, p. 87-95 (1980).

[19] Lê Dung Tráng and Saito, K., The local π1 of the complement of a hypersurface with normal crossings in codimension 1 is abelian. Arkiv for Mathematik 22(1) (1984) 1-24. | Zbl 0553.14006

[20] Looijenga, E.J.N., Isolated singular points on complete intersections, London Math. Soc. Lect. Note Series 77, Cambridge University Press, 1984. | MR 747303 | Zbl 0552.14002

[21] Milnor, J., Singular points of complex hypersurfaces, Annals of Math. Studies of Math. Studies, 61, Princeton Univ. Press, 1968. | MR 239612 | Zbl 0184.48405

[22] Milnor, J. and Orlik, P., Isolated singularities defined by weighted homogeneous polynomials, Topology, Vol. 9. pp. 385-393. | MR 293680 | Zbl 0204.56503

[23] Pellikaan, R., Hypersurface singularities and resolutions of Jacobi modules. Thesis Rijksuniversiteit Utrecht, 1985. | Zbl 0589.32017

[24] Pellikaan, R., Finite determinacy of functions with non-isolated singularities, Proc. London Math. Soc. (3), 57 (1988), 357-382. | MR 950595 | Zbl 0621.32019

[25] Sakamoto, K., Milnor fiberings and their characteristic maps, Proc. Intern. Conf. on Manifolds and Related Topics in Topology, Tokyo, 1973, 145-150. | MR 372244 | Zbl 0321.32010

[26] Schrauwen, R.: Topological series of isolated plane curve singularities, Preprint Rijksuniversiteit Utrecht, 1988. | MR 1071417

[27] Serre, Jean Pierre, Local fields, Graduate texts in math. 67 (1979). | MR 554237 | Zbl 0423.12016

[28] Siersma, D., Classification and deformation of singularities, Acad. Service, Vinkeveen, 1974. | MR 350775 | Zbl 0283.57012

[29] Siersma, D., Isolated line singularities, Proc. of Symp. in Pure Math., Vol. 40 (1983), Part 2, 485-496. | MR 713274 | Zbl 0514.32007

[30] Siersma, D., Hypersurface with singular locus a plane curve and transversal type A 1. Preprint 406, Rijksuniversiteit Utrecht (1986). | MR 1101856

[31] Siersma, D., Singularities with critical locus a 1-dimensional complete intersection and transversal type A1, Topology and its applications 27 (1987), 51-73. | MR 910494 | Zbl 0635.32006

[32] Siersma, D., Quasihomogeneous singularities with transversal type A1, Preprint 452, Rijksunversiteit Utrecht (1987). | MR 1000607

[33] Siersma, D., The monodromy of a series of hypersurface singularities, Preprint University Utrecht (1988). | MR 1057239

[34] Spanier, E.H., Algebraic Topology, McGraw-Hill, New York, 1966. | MR 210112 | Zbl 0145.43303

[35] Suzuki, M., Group theory I, Grundlehren der mathematischen Wissenschaften 247. | Zbl 0586.20001

[36] Teissier, B., Cycles evanescents, sections planes et conditions de Whitney, Astérisque 7 et8, 1973, 285-362. | MR 374482 | Zbl 0295.14003

[37] De Jong, T., Non-isolated hypersurface singularities, Thesis, Nijmegen, 1988.

[38] Varchenko, A.N., Zeta function of monodromy and Newton's diagram. Invent. Math.(1976), 37, 253-262. | MR 424806 | Zbl 0333.14007

[39] Zaharia, A., Sur une classe de singularités non-isolées. To appear in Rev. Roum. Math. Pure Appl. | MR 1082519 | Zbl 0719.32017

[40] Zariski, O., On the problem of existence of algebraic functions of two variables possessing a given branch curve. Amer. J. Math. 51 (1929). | JFM 55.0806.01 | MR 1506719

[41] Yung-Chen Lu, Singularity theory and an introduction to catastrophe theory, Universitext, Springer Verlag (1976). | MR 461562 | Zbl 0354.58008