Supersingular primes for elliptic curves over real number fields
Compositio Mathematica, Volume 72 (1989) no. 2, p. 165-172
@article{CM_1989__72_2_165_0,
     author = {Elkies, Noam},
     title = {Supersingular primes for elliptic curves over real number fields},
     journal = {Compositio Mathematica},
     publisher = {Kluwer Academic Publishers},
     volume = {72},
     number = {2},
     year = {1989},
     pages = {165-172},
     zbl = {0708.14020},
     mrnumber = {1030140},
     language = {en},
     url = {http://www.numdam.org/item/CM_1989__72_2_165_0}
}
Elkies, Noam D. Supersingular primes for elliptic curves over real number fields. Compositio Mathematica, Volume 72 (1989) no. 2, pp. 165-172. http://www.numdam.org/item/CM_1989__72_2_165_0/

[1] H. Davenport, Multiplicative Number Theory, 2nd ed. New York-Heidelberg -Berlin: Springer-Verlag 1980. | MR 606931 | Zbl 0453.10002

[2] M. Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. Abh. Math. Sem. Hansischen Univ. 14, (1941) 197-272. | JFM 67.0107.01 | MR 5125 | Zbl 0025.02003

[3] N.D. Elkies, The existence of infinitely many supersingular primes for every elliptic curve over Q. Invent. Math. 89, (1987) 561-567. | MR 903384 | Zbl 0631.14024

[4] B.H. Gross and D. Zagier, On singular moduli. J. Reine Angew. Math. 335, (1985) 191-220. | MR 772491 | Zbl 0545.10015

[5] S. Lang and H. Trotter, Frobenius distributions in GL2-extensions. Lect. Notes in Math., vol. 504. Berlin-Heidelberg-New York: Springer 1976. | MR 568299 | Zbl 0329.12015

[6] J.-P. Serre, A Course in Arithmetic. New York- Heidelberg-Berlin: Springer-Verlag 1973. | MR 344216 | Zbl 0256.12001