The tame fundamental group of an abelian variety and integral points
Compositio Mathematica, Volume 72 (1989) no. 1, pp. 1-31.
@article{CM_1989__72_1_1_0,
     author = {Brown, M. L.},
     title = {The tame fundamental group of an abelian variety and integral points},
     journal = {Compositio Mathematica},
     pages = {1--31},
     publisher = {Kluwer Academic Publishers},
     volume = {72},
     number = {1},
     year = {1989},
     zbl = {0718.14012},
     mrnumber = {1026327},
     language = {en},
     url = {http://www.numdam.org/item/CM_1989__72_1_1_0/}
}
TY  - JOUR
AU  - Brown, M. L.
TI  - The tame fundamental group of an abelian variety and integral points
JO  - Compositio Mathematica
PY  - 1989
DA  - 1989///
SP  - 1
EP  - 31
VL  - 72
IS  - 1
PB  - Kluwer Academic Publishers
UR  - http://www.numdam.org/item/CM_1989__72_1_1_0/
UR  - https://zbmath.org/?q=an%3A0718.14012
UR  - https://www.ams.org/mathscinet-getitem?mr=1026327
LA  - en
ID  - CM_1989__72_1_1_0
ER  - 
%0 Journal Article
%A Brown, M. L.
%T The tame fundamental group of an abelian variety and integral points
%J Compositio Mathematica
%D 1989
%P 1-31
%V 72
%N 1
%I Kluwer Academic Publishers
%G en
%F CM_1989__72_1_1_0
Brown, M. L. The tame fundamental group of an abelian variety and integral points. Compositio Mathematica, Volume 72 (1989) no. 1, pp. 1-31. http://www.numdam.org/item/CM_1989__72_1_1_0/

1 S. Abhyankar, Tame coverings and fundamental groups of algebraic varieties, Part I. Branch loci with normal crossings; Applications: theorems of Zariski and Picard. American J. Math. 81 (1959) 46-94. | MR | Zbl

2 M.L. Brown, Remark on two Diophantine conjectures, Bull. London Math. Soc. 17 (1985) 391-392. | MR | Zbl

3 G. Edmunds, Coverings of node curves, Journal London Math. Soc. 1 (1969) 473-479. | MR | Zbl

4 G. Faltings, G. Wüstholz, Rational Points, Aspects of Mathematics No. E6, Vieweg, Braunschweig/Wiesbaden, 1984. | MR | Zbl

5 A. Grothendieck, Revêtements Étales et Groupe Fondamental (SGA1), Lecture Notes in Math. 224, Springer-Verlag, New York 1971. | MR | Zbl

6 A. Grothendieck, Eléments de Géométrie Algébrique, I.H.E.S. Publ. Math. 1960-67. | Numdam

7 R. Hartshorne, Algebraic Geometry, Graduate Texts in Math., Springer-Verlag, 1977. | MR | Zbl

8 M. Hindry, Points de torsion sur les sous-variétés de variétés abéliennes, C.R. Acad. Sci. Paris 304 (1987) Série 1, 311-314. | MR | Zbl

9 S. Iitaka, On logarithmic Kodaira dimension of algebraic varieties, in: Papers dedicated to K. Kodaira; Complex Analysis and Geometry, C.U.P. 1972. | Zbl

10 Y. Kawamata, The cone of curves of algebraic varieties, Annals of Math. 119 (1984) 603-633. | MR | Zbl

11 S. Lang, Integral points on curves, I.H.E.S. Publ. Math. 6 (1960) 27-43. | EuDML | Numdam | MR | Zbl

12 S. Lang, Abelian Varieties, Interscience, New York 1959. | MR | Zbl

13 S. Lang, Hyperbolicity and Diophantine analysis, Bull, Amer. Math. Soc. 14 (1986) 159-206. | MR | Zbl

14 D.W. Masser, Linear forms in algebraic points of abelian functions, Proc. L.M.S. 33 (1976) 549-564. | MR | Zbl

15 D. Mumford, Abelian Varieties, O.U.P., Oxford 1970. | MR | Zbl

16 J. Noguchi, A higher dimensional analogue of Mordell's conjecture over function fields, Math. Annalen 258 (1981) 207-212. | EuDML | MR | Zbl

17 M. Raynaud, Sous-variétés d'une variété abélienne et points de torsion, in: Arithmetic and Geometry, Progress in Math. 35, Birkhaüser (1983) 327-352. | Zbl

18 J-P. Serre, Revêtements ramifiés du plan projectif (d'aprés Abhyankar), Séminaire Bourbaki Mai 1960 no. 204. | EuDML | Numdam | Zbl

19 J-P. Serre, Lectures on the Mordell-Weil theorem, Aspects of Mathematics No. E15, Vieweg, Braunschweig/Wiesbaden 1989. | MR | Zbl

20 J.H. Silverman, Integral points on abelian varieties, Invent. Math. 81 (1985), 341-346 (Correction, Invent. Math. 84 (1986) 223). | EuDML | MR | Zbl

21 E. Viehweg, Vanishing theorems, J. Reine und ang. Math. 335 (1982) 1-8. | EuDML | MR | Zbl

22 P. Vojta, Diophantine Approximation and Value Distribution Theory, Lecture Notes in Math. 1239, Springer-Verlag, New York 1987. | MR | Zbl