@article{CM_1982__46_2_133_0, author = {Schneider, Peter}, title = {On the values of the zeta function of a variety over a finite field}, journal = {Compositio Mathematica}, pages = {133--143}, publisher = {Martinus Nijhoff Publishers}, volume = {46}, number = {2}, year = {1982}, mrnumber = {659920}, zbl = {0505.14020}, language = {en}, url = {http://www.numdam.org/item/CM_1982__46_2_133_0/} }
Schneider, Peter. On the values of the zeta function of a variety over a finite field. Compositio Mathematica, Volume 46 (1982) no. 2, pp. 133-143. http://www.numdam.org/item/CM_1982__46_2_133_0/
[1] On values of zeta functions and l-adic Euler characteristics. Inventiones Math. 50 (1978) 35-64. | MR | Zbl
and :[2] La conjecture de Weil I. Publ. Math. IHES 43 (1975) 273-303. | Numdam | MR | Zbl
:[3] Brauer groups of abelian schemes. Ann. Sci. E.N.S. 5 (1972) 45-70. | Numdam | MR | Zbl
:[4] Algebraic cycles and the Weil conjectures. In Dix exposés sur la cohomologie des schémas, North-Holland Publ., Amsterdam 1968, pp. 359-386. | MR | Zbl
:[5] On a conjecture of Artin and Tate. Ann. Math. 102 (1975) 517-533. | MR | Zbl
:[6] Etale Cohomology. Princeton Univ. Press 1980. | MR | Zbl
:[7] Bi-extensions of formal groups. In Algebraic Geometry, Bombay 1968, Oxford Univ. Press 1969, pp. 307-322. | MR | Zbl
:[8] Abelian Varieties. Oxford Univ. Press 1974. | Zbl
:[9] Chow's moving lemma. In Algebraic Geometry, Oslo 1970 (F. Oort, ed.), Wolters-Noordhoff 1972, pp. 89-96. | MR | Zbl
:[10] Zeta and L Functions, In Arithmetical Algebraic Geometry, Conf. Purdue Univ. 1963, pp. 82-92. | MR | Zbl
:[11] Algebraic cycles and poles of zeta functions. In Arithmetical Algebraic Geometry, Conf. Purdue Univ. 1963, pp. 93-110. | MR | Zbl
:[12] On the conjecture of Birch and Swinnerton-Dyer and a geometric analog. Sém. Bourbaki 1966, exp. 306. | Numdam | Zbl
:[13] Endomorphisms of abelian varieties over finite fields. Inventiones Math. 2 (1966) 134-144. | MR | Zbl
:SGA 41/2 Cohomologie Etale,par Springer Lect. Notes in Math. 569, Heidelberg 1977. | MR | Zbl