Representations of the group of functions taking values in a compact Lie group
Compositio Mathematica, Volume 42 (1980) no. 2, pp. 217-243.
@article{CM_1980__42_2_217_0,
     author = {Gelfand, I. M. and Graev, M. I. and Ver\v{s}ik, A. M.},
     title = {Representations of the group of functions taking values in a compact {Lie} group},
     journal = {Compositio Mathematica},
     pages = {217--243},
     publisher = {Sijthoff et Noordhoff International Publishers},
     volume = {42},
     number = {2},
     year = {1980},
     mrnumber = {596877},
     zbl = {0449.22019},
     language = {en},
     url = {http://www.numdam.org/item/CM_1980__42_2_217_0/}
}
TY  - JOUR
AU  - Gelfand, I. M.
AU  - Graev, M. I.
AU  - Veršik, A. M.
TI  - Representations of the group of functions taking values in a compact Lie group
JO  - Compositio Mathematica
PY  - 1980
SP  - 217
EP  - 243
VL  - 42
IS  - 2
PB  - Sijthoff et Noordhoff International Publishers
UR  - http://www.numdam.org/item/CM_1980__42_2_217_0/
LA  - en
ID  - CM_1980__42_2_217_0
ER  - 
%0 Journal Article
%A Gelfand, I. M.
%A Graev, M. I.
%A Veršik, A. M.
%T Representations of the group of functions taking values in a compact Lie group
%J Compositio Mathematica
%D 1980
%P 217-243
%V 42
%N 2
%I Sijthoff et Noordhoff International Publishers
%U http://www.numdam.org/item/CM_1980__42_2_217_0/
%G en
%F CM_1980__42_2_217_0
Gelfand, I. M.; Graev, M. I.; Veršik, A. M. Representations of the group of functions taking values in a compact Lie group. Compositio Mathematica, Volume 42 (1980) no. 2, pp. 217-243. http://www.numdam.org/item/CM_1980__42_2_217_0/

[1] A.M. Veršik, I.M. Gelfand and M.I. Graev: Representations of the group SL(2, R) where R is a ring of functions. Russ. Math. Surv. 28, no. 5 (1973) 83. | MR | Zbl

[2] A.M. Veršik, I.M. Gelfand and M.I. Graev: Irreducible representations of the group GX and cohomology. Funct. Anal. and its Appl. 8, no 2 (1974) 67. | MR | Zbl

[3] I.M. Gelfand, M.I. Graev, A.M. Veršik: Representations of the group of smooth mappings of a manifold X into a compact Lie group. Compositio Math. 35, Fasc. 3 (1977) 299. | Numdam | MR | Zbl

[4] I.M. Gelfand, N. Ya. Vilenkin: Generalized functions, Vol. 4: Applications of Harmonic Analysis. Academic Press, New York, 1964. | MR | Zbl

[5] K. Maurin: Metody przestreni Hilberta. Warsawa, 1959. | MR

[6] J.L. Doob: Stochastic processes. New York, 1953. | MR | Zbl

[7] R.S. Ismagilov: On unitary representations of the group C∞ 0(X, G), G = SU2. Mat. Sbornik, 100, no. 1 (1976) 117. | Zbl

[8] R. Courant: Partial differential equations. New York, 1962.

[9] B. Simon: The P (ϕ2) Euclidean (quantum) field theory. Princeton Univ. Press, 1974. | Zbl

[10] A.V. Skorohod: Integration in Hilbert spaces. Moscow, "Nauka", 1975. | MR

[11] S.L. Sobolev: Some Applications of the Functional Analysis in Mathematical Physics. Leningrad, 1950. | MR | Zbl

[12] L. Hormander: The spectral function of an elliptic operator. Acta Math. 121, no. 3-4 (1968) 193. | MR | Zbl

[13] G.E. Shilov, Fan Dik-Tin: Integral, Measure, and Derivative on linear spaces. Moscow, "Nauka", 1967. | MR | Zbl

[14] M.A. Shubin: Pseudodifferential Operators and the Spectral Theory. Moscow, "Nauka", 1978. | MR | Zbl

[15] S. Albeverio, R. Hoegh-Krohn: The Energy representation of Sobolev-Lie groups. Preprint Universitat Bielefeld, 1976.

[16] A. Guichardet: Symmetric Hilbert spaces and related topics. Lect. Notes in Math. N 261, Springer, Berlin, 1972. | MR | Zbl

[17] K.R. Parthasarathy and K. Schmidt: A new method for constructing factorisable representation for current groups and current algebras, Commun. Math. Phys., 51, no. 1 (1976) 1. | MR | Zbl