@article{CM_1978__36_2_113_0, author = {Shih, Kuang-Yen}, title = {P-division points on certain elliptic curves}, journal = {Compositio Mathematica}, pages = {113--129}, publisher = {Sijthoff et Noordhoff International Publishers}, volume = {36}, number = {2}, year = {1978}, zbl = {0376.14010}, mrnumber = {515041}, language = {en}, url = {http://www.numdam.org/item/CM_1978__36_2_113_0/} }
TY - JOUR AU - Shih, Kuang-Yen TI - P-division points on certain elliptic curves JO - Compositio Mathematica PY - 1978 DA - 1978/// SP - 113 EP - 129 VL - 36 IS - 2 PB - Sijthoff et Noordhoff International Publishers UR - http://www.numdam.org/item/CM_1978__36_2_113_0/ UR - https://zbmath.org/?q=an%3A0376.14010 UR - https://www.ams.org/mathscinet-getitem?mr=515041 LA - en ID - CM_1978__36_2_113_0 ER -
Shih, Kuang-Yen. P-division points on certain elliptic curves. Compositio Mathematica, Tome 36 (1978) no. 2, pp. 113-129. http://www.numdam.org/item/CM_1978__36_2_113_0/
[1] Diophantine analysis and modular functions. Proc. Conf. Algebraic Geometry (Bombay, 1968) 35-42. | MR 258832 | Zbl 0246.10017
:[2] Lehrbuch der Algebra III. Braunschweig 1928. | JFM 54.0187.20
:[3] Hyperelliptic modular curves. Bull. Math. Soc. France, 102 (1974) 449-462. | EuDML 87238 | Numdam | MR 364259 | Zbl 0314.10018
:[4] Propriétés galoisiennes des points d'ordre fini des courbes elliptiques. Inventiones Math., 15 (1972) 259-331. | EuDML 142133 | MR 387283 | Zbl 0235.14012
:[5] On the construction of Galois extensions of function fields and number fields. Math. Ann., 207 (1974) 99-120. | EuDML 162534 | MR 332725 | Zbl 0279.12102
:[6] A reciprocity law in non-solvable extensions. J. Reine Angew. Math., 221 (1966) 209-220. | EuDML 150726 | MR 188198 | Zbl 0144.04204
:[7] Introduction to the arithmetic theory of automorphic functions. Publ. Math. Soc. Japan, No. 11, Iwanami Shoten and Princeton University Press, 1971. | MR 314766 | Zbl 0221.10029
:[8] Class fields over real quadratic fields and Hecke operators. Ann. of Math., 95 (1972) 130-190. | MR 314801 | Zbl 0255.10032
: