@article{CM_1970__22_4_425_0, author = {Wall, C. T. C.}, title = {On the classification of hermitian forms. {I.} {Rings} of algebraic integers}, journal = {Compositio Mathematica}, pages = {425--451}, publisher = {Wolters-Noordhoff Publishing}, volume = {22}, number = {4}, year = {1970}, mrnumber = {281710}, zbl = {0211.07602}, language = {en}, url = {http://www.numdam.org/item/CM_1970__22_4_425_0/} }
TY - JOUR AU - Wall, C. T. C. TI - On the classification of hermitian forms. I. Rings of algebraic integers JO - Compositio Mathematica PY - 1970 SP - 425 EP - 451 VL - 22 IS - 4 PB - Wolters-Noordhoff Publishing UR - http://www.numdam.org/item/CM_1970__22_4_425_0/ LA - en ID - CM_1970__22_4_425_0 ER -
Wall, C. T. C. On the classification of hermitian forms. I. Rings of algebraic integers. Compositio Mathematica, Volume 22 (1970) no. 4, pp. 425-451. http://www.numdam.org/item/CM_1970__22_4_425_0/
Untersuchungen über quadratische Formen in Körpern der Charakteristik 2. Crelle's Journal 183 (1941), 148-167. | JFM | MR | Zbl
[1]On modules with quadratic forms. In 'Algebraic K-theory and its Geometrical Applications'. Springer Lecture Notes, vol. 108 (1969), 55-66. | MR | Zbl
[2]Algèbre Ch. 9: Formes sesquilinéaires et formes quadratiques. Hermann, Paris 1959. | MR | Zbl
[3]Algèbre Commutative Ch. 3: Graduations, filtrations et topologies. Hermann, Paris, 1961. | Zbl
[4]Hasse principle for H1 of simply connected groups, pp. 159-163. (b) Strong approximation. pp. 187-196, in Proceedings of Symp. in Pure Math. IX: Algebraic groups and discontinuous subgroups. Amer. Math. Soc. 1966. | MR | Zbl
[5] (a)Aquivalenz Hermitscher Formen über einem beliebigen algebraischen Zahlkörper. Abh. Math. Sem. Hamburg 11 (1936), 245-248. | JFM | Zbl
[6]Introduction to quadratic forms. Springer-Verlag. | Zbl
[7]Corps Locaux. Hermann, 1962. | MR | Zbl
[8]Arithmetic of unitary groups. Ann. of Math. 79 (1964), 369-409. | MR | Zbl
[9][10] On the axiomatic foundations of the theory of Hermitian forms. Proc. Camb. Phil. Soc. 67 (1970), 243-250. | MR | Zbl