The WKB method and geometric instability for nonlinear Schrödinger equations on surfaces  [ Méthode WKB et instabilité géométrique pour les équations de Schrödinger non linéaires sur des surfaces ]
Bulletin de la Société Mathématique de France, Tome 136 (2008) no. 2, p. 167-193
À l'aide de la méthode WKB nous construisons des solutions approchées à l'équation de Schrödinger cubique sur une variété qui possède une géodésique stable. Cette construction permet d'obtenir des résultats d'instabilités dans des espaces de Sobolev.
In this paper we are interested in constructing WKB approximations for the nonlinear cubic Schrödinger equation on a Riemannian surface which has a stable geodesic. These approximate solutions will lead to some instability properties of the equation.
DOI : https://doi.org/10.24033/bsmf.2553
Classification:  35Q55,  35B35,  35R25
Mots clés: équation de schrödinger non linéaire, instabilité, quasi-mode
@article{BSMF_2008__136_2_167_0,
     author = {Thomann, Laurent},
     title = {The WKB method and geometric instability for nonlinear Schr\"odinger equations on surfaces},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {136},
     number = {2},
     year = {2008},
     pages = {167-193},
     doi = {10.24033/bsmf.2553},
     zbl = {1161.35050},
     mrnumber = {2415340},
     language = {en},
     url = {http://www.numdam.org/item/BSMF_2008__136_2_167_0}
}
Thomann, Laurent. The WKB method and geometric instability for nonlinear Schrödinger equations on surfaces. Bulletin de la Société Mathématique de France, Tome 136 (2008) no. 2, pp. 167-193. doi : 10.24033/bsmf.2553. http://www.numdam.org/item/BSMF_2008__136_2_167_0/

[1] S. Alinhac & P. Gérard - Opérateurs pseudo-différentiels et théorème de Nash-Moser, Savoirs Actuels, InterÉditions, Paris, 1991. | Zbl 0791.47044

[2] V. Banica - « On the nonlinear Schrödinger dynamics on 𝕊 2 », J. Math. Pures Appl. (9) 83 (2004), p. 77-98. | MR 2032582 | Zbl 1084.35082

[3] J. Bourgain - « Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations », Geom. Funct. Anal. 3 (1993), p. 107-156. | MR 1209299 | Zbl 0787.35097

[4] N. Burq, P. Gérad & N. Tzvetkov - « An instability property of the nonlinear Schrödinger equation on S d », Math. Res. Lett. 9 (2002), p. 323-335. | MR 1909648 | Zbl 1003.35113

[5] N. Burq, P. Gérard & N. Tzvetkov - « Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds », Amer. J. Math. 126 (2004), p. 569-605. | MR 2058384 | Zbl 1067.58027

[6] -, « Agmon estimates and nonlinear instability for Schrödinger equations », preprint, 2005.

[7] R. Carles - « Remarks on the Cauchy problem for nonlinear Schrödinger equations with potential », preprint arXiv:math.AP/0609391.

[8] -, « Geometric optics and instability for semi-classical Schrödinger equations », Arch. Ration. Mech. Anal. 183 (2007), p. 525-553. | MR 2278414 | Zbl 1134.35098

[9] M. Christ, J. Colliander & T. Tao - « Ill-posedness for nonlinear Schrödinger and wave equation », to appear in Annales IHP.

[10] -, « Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations », Amer. J. Math. 125 (2003), p. 1235-1293. | MR 2018661 | Zbl 1048.35101

[11] M. Combescure - « The quantum stability problem for some class of time-dependent Hamiltonians », Ann. Physics 185 (1988), p. 86-110. | MR 954669 | Zbl 0655.35076

[12] B. Helffer - Semi-classical analysis for the Schrödinger operator and applications, Lecture Notes in Mathematics, vol. 1336, Springer, 1988. | MR 960278 | Zbl 0647.35002

[13] W. Klingenberg - Riemannian geometry, de Gruyter Studies in Mathematics, vol. 1, Walter de Gruyter & Co., 1982. | MR 666697 | Zbl 0495.53036

[14] L. Perko - Differential equations and dynamical systems, Texts in Applied Mathematics, vol. 7, Springer, 1991. | MR 1083151 | Zbl 0717.34001

[15] J. V. Ralston - « Approximate eigenfunctions of the Laplacian », J. Differential Geometry 12 (1977), p. 87-100. | MR 470998 | Zbl 0385.58012