The WKB method and geometric instability for nonlinear Schrödinger equations on surfaces
[Méthode WKB et instabilité géométrique pour les équations de Schrödinger non linéaires sur des surfaces]
Bulletin de la Société Mathématique de France, Tome 136 (2008) no. 2, pp. 167-193.

À l'aide de la méthode WKB nous construisons des solutions approchées à l'équation de Schrödinger cubique sur une variété qui possède une géodésique stable. Cette construction permet d'obtenir des résultats d'instabilités dans des espaces de Sobolev.

In this paper we are interested in constructing WKB approximations for the nonlinear cubic Schrödinger equation on a Riemannian surface which has a stable geodesic. These approximate solutions will lead to some instability properties of the equation.

DOI : 10.24033/bsmf.2553
Classification : 35Q55, 35B35, 35R25
Keywords: nonlinear schrödinger equation, instability, quasimode
Mot clés : équation de schrödinger non linéaire, instabilité, quasi-mode
@article{BSMF_2008__136_2_167_0,
     author = {Thomann, Laurent},
     title = {The {WKB} method and geometric instability for nonlinear {Schr\"odinger} equations on surfaces},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {167--193},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {136},
     number = {2},
     year = {2008},
     doi = {10.24033/bsmf.2553},
     mrnumber = {2415340},
     zbl = {1161.35050},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/bsmf.2553/}
}
TY  - JOUR
AU  - Thomann, Laurent
TI  - The WKB method and geometric instability for nonlinear Schrödinger equations on surfaces
JO  - Bulletin de la Société Mathématique de France
PY  - 2008
SP  - 167
EP  - 193
VL  - 136
IS  - 2
PB  - Société mathématique de France
UR  - http://www.numdam.org/articles/10.24033/bsmf.2553/
DO  - 10.24033/bsmf.2553
LA  - en
ID  - BSMF_2008__136_2_167_0
ER  - 
%0 Journal Article
%A Thomann, Laurent
%T The WKB method and geometric instability for nonlinear Schrödinger equations on surfaces
%J Bulletin de la Société Mathématique de France
%D 2008
%P 167-193
%V 136
%N 2
%I Société mathématique de France
%U http://www.numdam.org/articles/10.24033/bsmf.2553/
%R 10.24033/bsmf.2553
%G en
%F BSMF_2008__136_2_167_0
Thomann, Laurent. The WKB method and geometric instability for nonlinear Schrödinger equations on surfaces. Bulletin de la Société Mathématique de France, Tome 136 (2008) no. 2, pp. 167-193. doi : 10.24033/bsmf.2553. http://www.numdam.org/articles/10.24033/bsmf.2553/

[1] S. Alinhac & P. Gérard - Opérateurs pseudo-différentiels et théorème de Nash-Moser, Savoirs Actuels, InterÉditions, Paris, 1991. | Zbl

[2] V. Banica - « On the nonlinear Schrödinger dynamics on 𝕊 2 », J. Math. Pures Appl. (9) 83 (2004), p. 77-98. | MR | Zbl

[3] J. Bourgain - « Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations », Geom. Funct. Anal. 3 (1993), p. 107-156. | MR | Zbl

[4] N. Burq, P. Gérad & N. Tzvetkov - « An instability property of the nonlinear Schrödinger equation on S d », Math. Res. Lett. 9 (2002), p. 323-335. | MR | Zbl

[5] N. Burq, P. Gérard & N. Tzvetkov - « Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds », Amer. J. Math. 126 (2004), p. 569-605. | MR | Zbl

[6] -, « Agmon estimates and nonlinear instability for Schrödinger equations », preprint, 2005.

[7] R. Carles - « Remarks on the Cauchy problem for nonlinear Schrödinger equations with potential », preprint arXiv:math.AP/0609391.

[8] -, « Geometric optics and instability for semi-classical Schrödinger equations », Arch. Ration. Mech. Anal. 183 (2007), p. 525-553. | MR | Zbl

[9] M. Christ, J. Colliander & T. Tao - « Ill-posedness for nonlinear Schrödinger and wave equation », to appear in Annales IHP.

[10] -, « Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations », Amer. J. Math. 125 (2003), p. 1235-1293. | MR | Zbl

[11] M. Combescure - « The quantum stability problem for some class of time-dependent Hamiltonians », Ann. Physics 185 (1988), p. 86-110. | MR | Zbl

[12] B. Helffer - Semi-classical analysis for the Schrödinger operator and applications, Lecture Notes in Mathematics, vol. 1336, Springer, 1988. | MR | Zbl

[13] W. Klingenberg - Riemannian geometry, de Gruyter Studies in Mathematics, vol. 1, Walter de Gruyter & Co., 1982. | MR | Zbl

[14] L. Perko - Differential equations and dynamical systems, Texts in Applied Mathematics, vol. 7, Springer, 1991. | MR | Zbl

[15] J. V. Ralston - « Approximate eigenfunctions of the Laplacian », J. Differential Geometry 12 (1977), p. 87-100. | MR | Zbl

Cité par Sources :